February 09, 2017

Today's Learning:

To remove brackets by multiplying out.

Multiplying Out Brackets 23

Multiply each term in the first bracket by each term in the second brackets.

Today's Learning:

To practice multiplying out double brackets.

4)
$$(d + 2)^{2}$$

= $(d+2)(d+2)$
= $d^{2} + 2d + 2d + 4$
= $d^{2} + 4d + 4$
5) $(w + 1)(w^{2} + 2w + 4)$
= $w^{3} + 2w - 4w + w^{3} + 2w - 4$
= $w^{3} + 3w^{2} - 7w - 4$

1

4) White down on Resarce the bert from 100100.

3

Today's Learning:

To practice multiplying out brackets to exam level.

6)
$$(m - 3)^{2} - 2(m + 4)(m - 5)$$

= $(m - 3)^{m} - 3) - 2(m + 4)(m - 5)$
= $m^{2} - 3m - 3m + 9 - 2(m^{2} - 5m + 4m - 20)$
= $m^{2} - 6m + 9 - 2(m^{2} - m - 20)$
= $m^{2} - 6m + 9 - 2m^{2} + 2m + 40$
= $-m^{2} - 4m + 49 - 2xm - 2m$

Multiply out the brackets and collect like terms

$$(x-4)(x^{2}+x-2).$$

$$x^{3} + x^{2} - 2x - 4x^{2} - 4x + 8$$

$$= x^{3} - 3x^{2} - 6x + 8$$

Multiply out the brackets and collect like terms: (2x-5)(3x+1).

2

Today's Learning:

To factorise an expression using a common factor and factorising using difference of two squares.

February 09, 2017

26/11/7 Factorising

Factorising an expression means writing it as a product of its factors.

e.g. Factorise the following by taking out a common factor:

a) 24g + 16gf **b)** $14x^3 - 20x^2$ $= 4g(6+4f) = 2x(7x^{2}-10x)$ $= 8g(3+2f) = 2x^{2}(7x-10)$ c) $14e^{3} - 20e^{2} + 30e$ $2e(7e^{2} - 10e + 15)$

261117 **Difference of Two Squares**

If you see 2 squared terms and one is negative, we can factorise using difference of two squares.

e.g. Factorise

possible:

1) (m + 1)(m - 1)

4) (2p + 5)(p - 1) 20+39-5

a) $g^{2} - 4$ = $(g + 2)(g - 2) = (m + r)(m - r)^{c} + 4t^{2} - 16y^{2}$ = $(g^{2} + 2)(g - 2) = (m + r)(m - r)^{c} + 4t^{2} - 16y^{2}$ = (2t + 4y)(2t - 4y)

Starter Multiply out the brackets, remembering to simplify where

Practice from Q8 on page 6

5) (3q - 1)(q - 4) 3q - 13q + 4m^- 1 2) (p + 5)(p - 2) $p^{2}+3p-10$ $T^{2}+2rT-3T-6r$ **3)** (a + 3)(a - 10) **7)** (2a + 5)(5a - 10) 22-72-30 102+252-202-50 =102+52-50

Sometimes we can take out a common factor, then use difference of two squares.

e.g. 3y² - 75 $= 3(y^{2} - 25)$ = 3(y+5)(y-5)

Today's Learning:

To start with an expression and factorise it using double brackets.

5

5)
$$m^{2} - 5m - 50$$

 $(m - 10)(m + 5)$
 $m^{2} + 10m - 5m - 50$
 $5_{1}10$
 $25_{1}2$
 $1_{1}50$
 $5_{1}4$
 $+5_{1}4 = 1$
 $-5+4 = -1$

7)
$$3f^{2} - 14f - 24$$

8) $6m^{2} + 5m - 4$
 $(3f - 12)(f + 2)$
 $3f^{2} - 12f + 6f - 24$
 $(3(+8))(f - 3)$
 $3f^{2} + 8f - 9f - 24$
 $(3f - 3)(f - 6)$
 $3f^{2} + 8f - 9f - 24$
 $(2f - 3)(f - 6)$
 $3f^{2} - 12f + 6f - 24$
 $(3f - 3)(f - 6)$
 $5f - 24f - 24$
 $(2f - 3)(f - 6)$
 $5f - 3f - 24f - 24$
 $(3f + 4)(f - 6)$

Factorising Expressions

To factorise any expression, look for

A common factor

Difference of two squares

└→ Trinomial to factorise

e.g. Factorise fully:

a) 3k² - 27

Today's Learning:

To write trinomials in completed square form.

b) $4c^{2} + 36c + 56$ $3(k^{2}-9)$ 3(k+3)(k-3) **b)** $4c^{2} + 36c + 56$ $= 4(c^{2} + 9c + 14)$ = 4(c + 7)(c + 2)

2/2/17

Starter

Completing the Square

Sometimes we want to write a trinomial as a squared bracket plus or minus an integer, ie. $(x + a)^2 + b$. completed square form

e.g.
$$x^2 + 4x + 3 = (x + 2)^2 - 1$$

Later, this will make sketching these graphs easier.

e.g. Write these trinomials in completed square form:

a) $x^2 + 8x + 7$ helf it (* a) $x^{2} + ax + 7$ and (x - y) = (x + 4x + 4x + 16) $= (x - 1)^{2}$ $= x^{2} + 4x + 4x + 16$ $= x^{2} + 8x + 16$ $= x^{2} + 8x + 16$ $= x^{2} - x - x + 1$ $= x^{2} - x - x + 1$ $= x^{2} - 2x + 1$

Write the following in completed square form...

1) <i>x</i> ² - 14 <i>x</i> + 5	5) <i>x</i> ² - 10 <i>x</i> + 3
(x - 4) - 44 2) $x^2 + 6x - 10$	6) x ² + 18x + 17
($x + 3$) - 19 3) $x^2 + 2x - 1$	7) <i>x</i> ² - 6 <i>x</i> + 2
4) $x^2 - 4x - 10$	8) $x^2 + 26x + 40$

Challenge: How would you write $x^2 + 5x + 3$ in

<u>Star</u> 5m -

4g - 3 > 7 - g

. > 10

7p² - 26p - 8

7p2-28p+2p

0.51

 $(7\rho + 2)(\rho - 4)$

0.5y0.34 + 0.34

1) Solve the equation:

2) Fully factorise the following:

3) Solve for g:

4) Calculate 0.34 x 1.5

Write in completed square form:

1)
$$x^{2} - x + 1$$

2) $x^{2} - 7x + 3(x - 3 \cdot 5)^{2} - 9 \cdot 25$
3) $x^{2} + 3x + 2(x - \frac{3}{5})^{2} - \frac{1}{4}$
4) $x^{2} + x + 6(x + \frac{1}{5})^{2} + 5 \cdot 75$
5) $x^{2} - 15x - 1(x + \frac{15}{5})^{2} - 55 \cdot 25$
6) $x^{2} + 7x + 10(x + \frac{1}{5})^{2} - 2 \cdot 25$

Today's Learning:

To practise trickier examples of completing the square.

1)
$$x^{2} - x + 1$$

2) $x^{2} - 7x + 3(x - 3 \cdot 5)^{2} - 9 \cdot 25$
3) $x^{2} + 3x + 2(x - \frac{3}{2})^{2} - \frac{1}{4}$
4) $x^{2} + x + 6(x + \frac{1}{4})^{2} + 5 \cdot 75$
5) $x^{2} - 15x - 1(x + \frac{15}{2})^{2} - 55 \cdot 25$
6) $x^{2} + 7x + 10(x + \frac{9}{2})^{2} - 2 \cdot 25$

When the coefficient of x is an odd number, halve it as normal:

February 09, 2017

10. Factorising NOTES.notebook

When there's a <u>negative</u> or <u>non-unitary</u> coefficient of x^2 , use brackets to deal with it, then multiply out later.

the expression can be written in the form $p(x + a)^2 + q$

e.g. Write in the form
$$p(x + a)^2 + q$$
:
1) $-x^2 + 4x - 5$
 $= -(x^2 - 4x + 5)$
 $= -(x^2 - 4x + 5)$
 $= -(x - 2)^2 + 1)$
 $= -(x - 2)^2 - 1$
2) $3x^2 - 6x + 2$
 $= 3(x^2 - 4x + 4)$
 $= 3(x^2 - 4)$
 $= 3(x^2 - 4)$
 $= 3(x^2 - 4)$
 $= 3($