Starter

$$
\begin{aligned}
& 3,7 \\
& 21,1
\end{aligned}
$$

1) Factorise fully:
a) $3 m^{2}-27$
b) $2 c^{2}-11 c-21$

$$
=3\left(m^{2}-9\right)=(c+7)(2 c-3)
$$

Today's Learning:
To change the subject of formulae.

Changing the Subject

Do the same thing to both sides, like solving an equation.
e.g. Change the subject of the formula to g :

Want to end

 with $\mathrm{g}=$1) $y=2 g .5$
$-5 \quad-5$
2) $\frac{5}{g}=2+r$
$y-5=2 g$
$-2=2$
$\frac{y-5}{2}=9$
$g=\frac{y-5}{2}$

$$
=3(m+3)(m-3)
$$

$$
\begin{aligned}
& 3-2 m=4 j-1 \\
& +1 \\
& 4-2 m=4 \\
& \frac{4}{4} \div i=1-\frac{m}{2} \\
& \frac{4-2 m}{4}=j=\frac{4-2 m}{4}
\end{aligned}
$$

Change the subject of the formula to j :
$5=-q(2+r)$
$\div(2+1) \div(2+1)$
$\frac{5}{2+r}=g$
3) $4+h=2(g+3)$
$4+h=2 g+6$

$$
-2+h=2 g
$$

$$
\frac{-2+h}{2}=g
$$

Starter

1) At a diner, Table 8 paid $£ 12$ for a burger and two milkshakes. Table 5 paid $£ 35.50$ for 3 milkshakes and 5 burgers. Write equations and hence find the price of burgers and milkshakes at the diner.
2) Freya bought 2 Freddos and 3 Star Bars from the corner shop and paid $£ 1.49$. Fred bought 3 Freddos and 5 Star Bars from the same shop and paid $£ 2.40$. How much does the shop charge for each?

Change the subject to p :

$$
4\left(p^{2}-3\right)=4+q
$$

If $q=4$, what is the value of p ?

$p=\sqrt{\frac{16+4}{4}}$
$p=\sqrt{\frac{20}{4}}=\sqrt{5}$

Change the subject to g

egg. 4) $7(2-g)=5 m-2$
(-14) $\begin{aligned} 14-7 g & =5 m-2 \\ -7 g & =5 m-16\end{aligned}$

$$
\begin{aligned}
-7 g & =5 m-16 \\
g & =\frac{5 m-16}{-7}
\end{aligned}
$$

6) $3-r=2+2 g^{2}$

$$
1-r=2 g^{2}
$$

$$
\frac{\frac{1-r}{2}=g^{2}}{g=\sqrt{\frac{1-r}{2}}}
$$

5) $\frac{7}{(g-2)}=3$

$$
\begin{aligned}
7 & =3(g-2) \\
7 & =3 g-6 \\
13 & =3 g \\
g & =\frac{\sqrt[3]{3}}{3}
\end{aligned}
$$

Re-arrange for b and evaluate for when $f=2$ and $n=5$

1) $41+2 f=n b^{2}$
$n b^{2}=41+2 f$ $b^{2}=\frac{41+2 f}{n}$

$$
b=\sqrt{\frac{n}{\frac{41+2 f}{n}}}
$$

$$
b=\sqrt{\frac{41+4}{5}}=\sqrt{9}=3
$$

2) $\mathrm{n}=\underline{5}(\mathrm{~b}-\mathrm{f})$ $\times 33 \times 3$ $3 n=5(b-f)$ $3 n=5 b-5 f$ $3 n+5 f=5 b$
$b=\frac{3 n+54}{5}=5$
3) Change the subject of this formula too, and calculate the value of a when $h=13$ and $b=5$

$$
h^{2}=a^{2}+b^{2}
$$

$$
a=\sqrt{h^{2}-b^{2}}
$$

4) Change the subject of the formula to k, and evaluate the change in k when a) $g=5$ and

$$
\text { b) } g=6
$$

$$
c=\frac{k(g-4)}{b}
$$

