Starter

1) Solve $x^{2}=3 x+18$ for \boldsymbol{x}.

$$
x^{2}-3 x-18=0
$$

2) Simplify $\frac{\boldsymbol{x}^{4} \times \boldsymbol{x}^{-1}}{\boldsymbol{x}^{3}}$

$$
\begin{aligned}
& 29 \\
& 3,6
\end{aligned}
$$

$$
\begin{gathered}
(x+3)(x-6)=0 \\
x \equiv-3 \text { or } 6
\end{gathered}=\frac{x^{3}}{x^{3}}=1
$$

3) Multiply out and simplify: $(a+1)(2 a-5)(a-2$

$$
\begin{aligned}
& =\left(2 a^{2}+2 a-5 a-5\right)(2-2) \\
& =\left(2 \partial^{2}-3 a-5\right)(2-2)
\end{aligned}
$$

4) Calculate $\frac{5}{4 t} \times \frac{2}{15}=\frac{10}{60 t}=\frac{1}{6 t}$

Quadrilaterals: square, rectangle, parallelogram, trapezium,

Today's Learning:

To revise the properties of 2D shapes.

Circle

Starter

1) a) Write in completed square form: . $x^{2}-6 x-10$
b) hence write down the coordinates of the turning point of the graph $y=x^{2}-6 x-10$
a) $(x-3)^{2}-19$
$(x-3)(x-3)$
b) $\begin{aligned} & y=(x-3)^{2}-19 \\ & (3,-19)\end{aligned}$
$=x^{2}-6 x+9$
2) Simplify as much as possible:
a) $\frac{g^{5} \times g}{g^{4}}$
b) $\sqrt{108}+\sqrt{75}$
c) $\left(b^{3}\right)^{4} \times b^{\frac{1}{4}}$
$=\frac{g^{6}}{g^{4}}$
$=\sqrt{36 \times 3}+\sqrt{25 \times 3}$
$=6 \sqrt{3}+5 \sqrt{3}$
$=b^{12} \times b^{\frac{1}{4}}$
$=g^{2}$

The sum of the internal angles in an n sided polygon....

Internal Angles of a Polygon

The sum of the internal angles for an n-sided polygon is $180 \times(n-2)$.
e.g. Find the size of each internal angle in a regular hexagon.

$$
n=6
$$

$180 \times(6-2)$
$=180 \times 4$
$600 \div 6=100$ - 720°
$120 \div 6=20$

$$
\begin{aligned}
\text { each angle } & =720^{\circ} \div 6 \\
& =120^{\circ}
\end{aligned}
$$

Starter

Calculate:

1) $\frac{1}{3}-\frac{1}{6 e}$
2) $\frac{2}{4 t} \times \frac{3}{2}$
$=\frac{2 e}{6 e}-\frac{1}{6 e}=\frac{2 c-1}{6 c}$
$=\frac{6}{8 t}=\frac{3}{4 t}$
3) $\frac{6}{7} \div \frac{12}{6 y}$
4) $\frac{4}{15}+\frac{3 r}{4}$
$=\frac{6}{7} \times \frac{6 y}{12}$
$=\frac{16}{60}+\frac{45 \%}{60}$
$=\frac{36 y}{84}=\frac{3 y}{7}$
$=\frac{16+45 r}{60}$

Exterior Angles....

Exterior Angles

$2110 / 17$
The exterior angles of any polygon add up to 360°. A regular polygon has equal exterior angles.

1) Find the size of each external angle in a regular...
a) pentagon
2) Find x.
b) hexagon
c) decagon

Today's Learning:

Revising angle facts and angles in circle facts.

Revision: Angles in Circles

A chord is a line joining 2 points on the circumference, e.g. $A B$.

Any triangle in a semi-circle (using the diameter as base) is a right angle triangle.

If radii are drawn from A
and B, an isosceles triangle will be formed.

A tangent to a circle is a straight line that meets the circle at exactly one point. A tangent always meets a radius at a right angle.

1) Fill in all the angles in these circles:

2) Find the length L :

SOH CAH TOA practice
Find the missing length or angle:

$A \times \sin (70)^{* A}=15 \quad B=\sin ^{-1}\left(\frac{10}{10}\right)(\times \cos (22)=17$ $A=\frac{15}{\sin (70)}=16.0 \mathrm{~cm}(1 d . \mathrm{p})=.45 \cdot 6^{\circ} \mathrm{(1d.p)} C=.\frac{17}{\cos (27)}$

$\begin{aligned} & a d j \\ & \cos (x)=\frac{a d j}{\mathrm{hyP}}\end{aligned}$
$\cos (F)=\frac{16}{24}$
$F=\cos ^{-1}\left(\frac{16}{24}\right)$
$=48.2^{\circ} \quad=38^{\circ} \quad D=\frac{20}{\sin (68)}$
($1 \mathrm{~d} \cdot \mathrm{p}$.

Starter

1) At a diner, Table 8 paid $£ 12$ for a burger and two milkshakes. Table 5 paid $£ 35.50$ for 3 milkshakes and 5 burgers. Write equations and hence find the price of burgers and milkshakes at the diner.

$$
\begin{aligned}
& b+2 m=12 \text { (1) } \\
& 5 b+3 m=35 \cdot 50 \text { (2) } \\
&-5 \times \text { (1) } \quad-5 b-10 m=-60 \\
& \text { (2) } \quad 5 b+3 m=35.50 \\
&-7 m=-24.50 \\
& m=3.5 \\
& \text { use (1) } b+2 m=12 \\
& b+7=12 \\
& b=5 \quad \text { burger } 75 \\
& \text { milkshake } 23.50
\end{aligned}
$$

2) Freya bought 2 Freddos and 3 Star Bars from the corner shop and paid $£ 1.49$. Fred bought 3 Freddos and 5 Star Bars from the same shop and paid $£ 2.40$. How much does the shop charge for each?

Perpendicular Bisectors in Circles

$A B$ is a chord
Triangle AOB is isosceles

A perpendicular bisectoris a line
which cuts another line in half and does so at right angles.

$O C$ is a perpendicular bisector.
e.g. 1) Find d
$a^{2}=n^{2}-b^{2}$
$d^{2}=1 S^{2}-13^{2}$

$$
=56
$$

$$
\begin{gathered}
=56 \\
d=\sqrt{56}=7.48 \mathrm{~cm} \\
(2 \mathrm{~d} \cdot \mathrm{e})
\end{gathered}
$$

egg. 2) Find L.

Two identical shapes are used to form a logo. Each shape is part of a circle. The circles have centres C_{1} and C_{2}. The radius of each is 14 cm .

The logo has half-turn symmetry about the mid-point of $A B$. $A B$ is 48 cm long. Calculate the height of the logo.

This perfume bottle has a label in the shape of part of a circle. A diagram of the label is shown below. The centre of the circle is O. The chord $A B$ is 9 cm . The radius $O B$ is 6.6 cm . Find the height of the label.

The diagram below shows the circular cross-section of a milk tank.

The radius of the circle, centre 0 , is 1.2 metres.
The width of the surface of the milk in the tank, represented by ML in the diagram, is 1.8 metres.

Calculate the depth of the milk in the tank

