1) Fully factorise

Starter

$4 y^{2}-5 y-6$

$$
-8 y+3 y
$$

2) Expand the brackets and simplify: $(m+4)(2 m-3)$

$$
2 m^{2}-3 m+8 m-12
$$

3) Calculate 20% of 340 without a calculator.

$$
34 \times 2=68
$$

4) What is 40 ml increased by 20% ?

5) Factorise fully:

$$
\begin{array}{rr}
-5 & +4 \\
5 & -4
\end{array}
$$

2) Without a calculator, find $2.3 \times 10^{5} \times 3 \times 10^{-2}-2$

$$
=2.3 \times 3 \times 10^{5} \times 10^{-2}
$$

$$
=2.3 \times 3 \times 10^{3}
$$

$$
=6.9 \times 10^{3}
$$

3) Without a calculator, simplify $\frac{912}{18}=\frac{456}{9}=\frac{152}{3}$

Today's Learning:

To find the equation of quadratic graphs using substitution of a point.

```
0
```

.

$$
\left.y=k x^{2} \text { graph is stretched }\right\rfloor \text { by a factor of } k
$$

Today's Learning:

To continue to consider transformations of quadratic graphs.
e.g. Find the equation of the graph of the form $y=k \boldsymbol{x}^{2}$

$$
\begin{array}{r}
5=k \times 1^{2} \\
5=k \times 1 \\
k=5 \\
y=5 x^{2}
\end{array}
$$

Starter

1) Without a calculator, find a fifth of 70 .
2) Fully factorise: $3 g^{2}-13 g-10$
3) Multiply out the brackets: $(e+2)(e+3)(e-1)$

$$
\begin{aligned}
& 3 g-10 g-3 g+10 \\
& (3 g+2)(g-5) \\
& 3 g^{2}+2 g \cdot 15 g-10
\end{aligned}
$$

$\operatorname{Starter}_{3 m^{2}+12 m+9} \quad 3(m+1) / m+3$

1) Fully factorise:

$$
3\left(m^{2}+4 m+3\right)
$$

$(3 m+3)(m+3)$ $3 m^{2}+9 m+3 m+9$
2) Simplify the following:

$$
\begin{aligned}
& \text { a) } \sqrt{40}+\sqrt{160} \\
& \begin{array}{ll}
\text { b) } \frac{x^{4}}{x^{2} \times x} & =\frac{x^{4}}{x^{3}} \\
=\sqrt{4 \times 10}+\sqrt{16 \times 10} \\
=2 \sqrt{10}+4 \sqrt{10}=6 \sqrt{10}
\end{array}
\end{aligned}
$$

3) Without a calculator, find 53×31

$53 \times 3=159$	53
1590	$\times 31$
+53	
1642	1643

Find the equations of these graphs, of the form $y=k x^{2}+q$

The graph of $\mathrm{y}=(x+\mathrm{p})^{2}$

e.g. Find p for these graphs of $y=(x+p)^{2}$:
a)

$p=-6$
b)

$p=5$

Sketching Quadratic Graphs

We can be asked to label:

- Turning Point and its nature
- Roots (where it crosses the x-axis)
- y-intercept
- Equation of the axis of symmetry
$\left.\begin{array}{l}\text { e.g. 1) Sketch } y=-(x+3)^{2} \text { and label all of the above. } \\ \text { Ip: }(-3,0) \text { maximum } \\ \text { Roots: }(-3,0) \\ \text { yintcrapt: Set } x=0 \\ y\end{array}\right)=-(0+3)^{2} \quad(-9,0)$

$$
\text { Starter } \quad x^{2}+x-6 x-6
$$

1. Factorise: $x^{2}-x-6 \quad(x-3)(x+2)$
2. Factorise: $x^{2}-25(x+5)(x-5)$

$$
x^{2}-2 x+3 x-6
$$

3. Factorise: $2 x^{2}-8 x$
4. State the gradient of
the line: $4 y+12=2 x$

Starter

2) Calculate $3 \times 10^{4} \times 7 \times 10^{2}$, giving your answer in scientific notation

3) Find the area of the sector:
$3)$ Round to 2 sig. fig.

$$
\frac{x}{360} \times \pi \times 1^{2} \frac{62}{360} \times \pi \times 12^{2}
$$

1) Find a and b, given:
$2 a-b=2$
$a+b=7$
$3 a>9$
$a=3$
$b=4$ $2\left(x^{2}-4 x\right)=2 x(x-4)$

Starter

1) Write down the y-intercept of the line $2 y=3-2 \boldsymbol{x}$

$$
\begin{aligned}
& 2 y=-2 x+3 \\
& y=-x+1.5
\end{aligned}
$$

$$
2 y=3
$$

2) Without a calculator, find a fifth of 22
3) Simplify $3 e^{4} \times 2 e^{-2}$
$6 e^{2}$
4) What is the difference between -4 and 7 ?

$$
\text { e.g. 3) Sketch the graph of } y=(x-2)(x+3)
$$

$$
y \text {-int: } \operatorname{set} x=0
$$

$$
\begin{aligned}
y & =(0-2)(0+3) \\
& =(-2)(3)
\end{aligned}
$$

$$
=(-2)(3)
$$

$$
=-6
$$

Roots: set $y=0$

$$
\begin{aligned}
& 0=(x-2)(x+3)
\end{aligned}
$$

$$
x-2=0 \text { or } x+3=0
$$

$$
x=2 \text { or } x=-3
$$

$$
\begin{gathered}
y=(-0.5-2)(-0.5+3) \\
=(-2.5)(2.5) \\
=-6.25 \\
\operatorname{TPC}(-05,-6.25) \\
\quad \text { minimum }
\end{gathered}
$$

Starter
Factorise the following:

1) $3 m^{2}-13 m-10$
2) $2 p^{2}-18$
c) $3 g h+6 g^{2}$

$$
\begin{gathered}
(3 m+2)(m-5) 2\left(p^{2}-9\right) \quad 3 g(n+2 g) \\
3 m^{2}+2 m-15 m-10(p+3)(p-3) \\
2(p+1)
\end{gathered}
$$

$$
a \times b=0
$$

What can you say about a and b ?

Sketch the graph of $y=-(x+2)(x-2)$

$$
\begin{gathered}
y \text {-int: set } x=0 \\
y=-(2)(-2) \\
=-(-4) \\
=4 \\
\text { ats: set } y=0 \\
0=-(x+2)(x-2) \\
x+2=0 \text { or } x-2=0 \\
x=-2 \text { or } x=2
\end{gathered}
$$

Today's Learning:
Sketching quadratic graphs.

Sketch $\mathrm{y}=(\boldsymbol{x}+4)(\boldsymbol{x}-8)$
y-int $\operatorname{set} x=0$

$$
\begin{gathered}
0=(x+4)(x-8) \\
x+4=0 \text { or } x-8=0 \\
x=-4 \text { or } x=8
\end{gathered}
$$

line of sm: $x=2$
$T P: y=(2+4)(2-8)$
$=(6)(-6)$
$=-36$
$(2,-36)$
minimum

Starter

a) Write the expression $(\boldsymbol{x}+10)(\boldsymbol{x}+2)$ in completed square form. $=x^{2}+12 x+20=(x+6)^{2}-16$
b) Hence sketch the graph $y=(x+10)(x+2)$, marking the coordinates of the turning point and the nature of the turning point.

$$
a \times b=0
$$

How do we solve $(x+4)(x-1)=0$ for \boldsymbol{x} ?

$$
\begin{aligned}
x+4 & =0 \text { or } x-1=0 \\
x & =-4 \text { or } x=1
\end{aligned}
$$

How might we solve $\boldsymbol{x}^{2}-\boldsymbol{x}-6=0$

$$
\begin{gathered}
(x-3)(x+2)= \\
x=3 \text { or }-2
\end{gathered}
$$

Starter

a) Write the expression $(\boldsymbol{x}-5)(\boldsymbol{x}+3)$ in completed square form. $x^{2}-2 x-15=(x-1)^{2}-16$
b) Hence sketch the graph $y=(x-5)(x+3)$, marking the coordinates of the turning point and the nature of the
turning point.

1) $x^{2}-2 x-35=0 \quad 7,3$
2) $2 x^{2}+10 x=0$

$$
\begin{aligned}
& (x-7)(x+5)=0 \\
& x=7 \text { or } x=-5
\end{aligned}
$$

$$
2 x(x+5)=0
$$

$$
\begin{array}{rrr}
2 x=0 \text { or } & x+5=0 \\
x=0 & x=-5
\end{array}
$$ A quadratic equation can be written as $\mathbf{a} \boldsymbol{x}^{2}+\mathbf{b} \boldsymbol{x}+\mathbf{c}=\mathbf{0}$ Then, we can solve by factorising.

Examples:

Example:

Solve $2 x^{2}+5 x+3=0$

$$
\begin{gathered}
2 x^{2}+6 x-1 x-3 \quad 3 \\
(2 x+3)(x+1)=0 \\
2 x^{2}+2 x+3 x+3 \\
2 x+3=0 \text { or } x+1=0 \\
-3 \quad-3 \quad x=-1 \\
2 x=-3 \\
x=-1.5
\end{gathered}
$$

Wat

$$
-\frac{+4 \sqrt{n}}{2}
$$

$$
x==0.0 .77^{\circ}(124)
$$

How can we tell how many roots an equation has?

Today's Learning:

To write any quadratic equation in the form $\mathbf{a} \boldsymbol{x}^{2}+\mathbf{b} \boldsymbol{x}+$ $\mathbf{c}=\mathbf{0}$ and to solve equations that don't factorise by using the quadratic formula.

Starter

Solve using the Quadratic Formula, giving answers to 2 decimal places: $\quad(x+5)(x+5)$
a) $4 x^{2}-11=0$
b) $(x+5)^{2}=7$
C) $4 x(x-3)+2=0$ $x^{2}+10 x+25=7 \quad 4 x^{2}-12 x+2=0$
$=\frac{ \pm \sqrt{11}}{2} \quad x^{2}+10 x+18=0=2.82$

$$
\begin{aligned}
& x=-2.35 \\
& \text { or }-765
\end{aligned}
$$

The Discriminant
For a quadratic equation $a x^{2}+b x+c=0$ the discriminant is $b^{2}-4 a c$.

$$
\begin{aligned}
& b^{2}-4 a c>0 \text { means } 2 \text { real, distinct roots } \\
& b^{2}-4 a c=0 \text { means } 2 \text { real, equal roots } \\
& b^{2}-4 a c<0 \text { means no real roots }
\end{aligned}
$$

e.g. 1) Determine the nature of the roots of $2(x+1)=x^{2}-3$

$$
\begin{aligned}
& 2 x+2=x^{2}-3 \\
& -2 x=2 x \\
& 2=x^{2}-2 x-3 \\
& -2=-2 \\
& 0=x^{2}-2 x-5 \\
& a=1 \quad b=-2 c=-5
\end{aligned}
$$

$$
b^{2}-4 a c=4-4(1)(-5)
$$

$$
=4+20=24
$$

$$
b^{2}-4 a c=24>0 \rightarrow 2 \text { realdistrince }
$$

roots.
e.g. 2) Find the range of values for T such that $x^{2}+2 x-2 T=$

Starter

0 has 2 real, distinct roots

$$
\begin{aligned}
& a= 1 \quad b=2 c=-2 T \\
& b^{2}-4 a c= 4-4(1)(-2 T) \\
&=4+8 T>0 \\
&-4>-4 \\
& 8 T>-4 \\
& \div 8 \div 6 \\
& T>\frac{-4}{8} \\
& T>\frac{-1}{2}
\end{aligned}
$$

Starter

Rationalise the denominator:

$$
\begin{gathered}
\frac{4}{(\sqrt{5}+\sqrt{2})} \times \frac{(\sqrt{5}-\sqrt{2})}{(\sqrt{5}-\sqrt{2})} \\
=\frac{4 \sqrt{5}-4 \sqrt{2}}{5-\sqrt{10}+\sqrt{10}-2} \\
=\frac{4 \sqrt{5}-4 \sqrt{2}}{3}
\end{gathered}
$$

Starter

1) Given the function $f(\boldsymbol{x})=(5-\boldsymbol{x})^{2}$, evaluate:
a) $f(3)$
b) $f(-1)$

> a) $(5-3)^{2}$
> b) $f(-1)=(5--1)^{2}$
> $=6^{2}=36$
2) Multiply out the brackets and simplify:
$(w+1)(w-1)(w+5)$

$$
\left(w^{2}-1\right)(w+5)
$$

Simplify:

$$
=w^{3}-w+5 w^{2}-5
$$

$$
=w^{3}+5 w^{2}-w-5
$$

The areas of these rectangles are equal
a) Find the value of $x . \quad$ b) Calculate the area of the rectangles.

$$
\begin{aligned}
& \begin{array}{ll}
72 \mathrm{~cm}^{2} \quad(x+1) \mathrm{cm} & 72 \mathrm{~cm}^{2}(x+3) \mathrm{cm} \\
(2 x+2) \mathrm{cm} & (x+4) \mathrm{cm}^{8}
\end{array} \\
& (2 x+2)(x+1)=(x+3)(x+4) \\
& 2 x^{2}+2 x+2 x+2=x^{2}+4 x+3 x+12 \\
& 2 x^{2}+4 x+2=x^{2}+7 x+12 \\
& -x^{2}-7 x-12 \quad-x^{2}-7 x-12 \\
& x^{2}-3 x-10=0 \\
& (x-5)(x+2)=0 \\
& x-5=0 \text { or } x+2=0 \\
& x=5 \text { or }-2 \\
& x=-2 \text { not possible } \\
& \text { so } x=5
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(a^{2}\right)^{3} \times a^{-2}}{a^{5} \times a^{-5}} \\
& =\frac{a^{6} \times a^{-2}}{a^{5} \times a^{-5}}=\frac{a^{4}}{a^{0}} \\
& =\frac{a^{4}}{1}=a^{4}
\end{aligned}
$$

The profit made by a publishing company of a magazine is calculated by the formula

$$
y=4 x(140-x)
$$

where y is the profit (in pounds) and x is the selling price (in pence) of the magazine.

The graph below represents the profit y against the selling price x
 magazine.

The curved part of the letter A in the Artwork logo is in the shape of a parabola.
The equation of this parabola is $y=(x-8)(2-x)$.

(a) Write down the coordinates of Q and R .
(b) Calculate the height, h, of the letter A

The diagram below shows the path of a rocket which is fired into the air.
The height, h metres, of the rocket after t seconds is given by

(a) For how many seconds is the rocket in flight?
(b) What is the maximum height reached by the rocket?

