Starter

1) Solve for T :

$$
S T+3<8 T
$$

2) Simplify:

$$
\begin{gathered}
\frac{3 m^{2}-6 m}{m^{2}-8 m+12} \quad 3<\frac{3 m(m-2)}{(m-6)(m-2)} \quad 1<T \\
x^{2} \times x^{3}=x^{5}=\frac{3 m}{m-6}
\end{gathered}
$$

3) Simplify:

$$
\frac{c}{\sqrt[3]{c^{2}}}=\frac{c^{1^{2 / 3}}}{c^{m-6}}=c^{1 / 3} \sqrt[3]{c}
$$

4) Solve for m :

$$
\begin{aligned}
& 3(m-2)=2(3-m)+9 \\
& 3 m-6=6-2 m+9 \\
& 5 m-6=15 \\
& 5 m=21 \\
& m=4 \frac{1}{5}
\end{aligned}
$$

Starter

The door swings through an angle of 85°. Calculate the length of the dotted perimeter, so it can be marked out in tape.
Perimeter

$$
\begin{aligned}
& \text { Arclengh }=\frac{85}{360} \times \pi \times d \\
&= \frac{85}{366} \times 1 \times 170 \\
&=126.1 \mathrm{~cm} . \\
& \text { Perimeter }=85+85 \\
&+126.1 \mathrm{~cm} \\
&= 296 \mathrm{~cm}
\end{aligned}
$$

Today's Learning:
To solve simultaneous equations using graphs.

In McDonalds, Georgia bought 2 happy meals, and paid $8 €$. Harry got a happy meal and a McFlurry and paid $6 €$.

How much does each item cost?

$$
\begin{aligned}
2 \times h & =8^{96} \\
h+m & =6 \\
4+m & =6 \\
m & =2
\end{aligned}
$$

5/10/16 Simultaneous Equations - Substitution

$$
\begin{gathered}
3 x+2(x-1)=18 \quad y=x-1 \\
3 x+2 x-2=18 \\
3 x+2 x=20 \\
5 x=20 \\
x=4 \\
3 x+2 y=18 \\
12+2 y=18 \\
2 y=6 \\
y=3
\end{gathered}
$$

Starter

1) Fully factorise: $\quad 2 m^{3}+14 m^{2}+24 m$

$$
\begin{gathered}
2 m^{3}+14 m^{2}+24 m \\
=2 m\left(m^{2}+7 m+12\right)
\end{gathered}
$$

2) Solve for g :

$$
\begin{aligned}
& -2 m(m+3)(m+4) \\
2 g+9> & -g \\
-2 g \quad & -8 g \\
9> & -3 g \\
\div 3 & \vdots 3
\end{aligned}
$$

3) Find the area of the shape:

$$
3>-9 \rightarrow-3<9
$$ $9 \geqslant-3$

Mike wanted to know the price of tickets and popcorn at the cinema.

All he knows is that James bought 2 tickets and 1 popcorn and that cost $£ 28$, and Sarah bought 1 ticket and 3 popcorn and that cost $£ 24$.

How could he figure out the price of popcorn and of tickets?

$$
\begin{gathered}
2 T+p=28(T+3 p=240 \\
T=24-3 P 2 T+6 p=48 \text { (3) } \\
2(24-3 p)+p=28 \quad 5 p=20 \\
48-6 p+p=28 \quad T=12 \\
20-6 p+p=0 \quad 2 T+4=28 \\
20=5 p \quad 2 T=24 \\
p=4 \quad
\end{gathered} \quad T=12 .
$$

Solving by elimination:

$$
\begin{aligned}
& 2 y+x=5 \\
& 4 y-x=7 \\
& 6 y=12 \\
& y=2
\end{aligned}
$$

Today's Learning:
Solving Simultaneous Equations by elimination.

$$
\begin{aligned}
T+B & =6 \\
T-B & =4 \\
2 T & =10 \\
T & =5
\end{aligned} \quad B=1 .
$$

$$
\begin{align*}
& 4 b+2 c=50 \\
& 2 b+2 c=30 \tag{2}\\
& \text { (2) } x-1:-2 b-2 c=-30 \\
& \text { (1): } \\
& 2 b=20 \\
& b=10 \\
& 4 b+2 c=90 \\
& 40+2 c=50 \\
& 2 c=10 \\
& c=5
\end{align*}
$$

$4 b+c=210$
$2 b+3 c=13$
(1) $x-3$

$$
\begin{align*}
-12 b-3 c & =-63 \\
2 b+3 c & =13 \tag{2}\\
-10 b & =-50 \\
b & =5 \\
2 b+3 c & =13 \\
10+3 c & =13 \\
3 c & =3 \\
c & =1
\end{align*}
$$

Solve the following pairs of simultaneous equations:
(a)

$$
\begin{aligned}
x+y & =4 \\
x-y & =2 \\
2 x & =6 \\
x & =3 \\
y & =1
\end{aligned}
$$

(b)

$$
\begin{aligned}
x+y & =9 \\
x-y & =5 \\
2 x & =14 \\
x & =7 \\
y & =2
\end{aligned}
$$

(c)

$$
\text { (c) } \begin{gathered}
x+y=7 \\
x-y=3 \\
2 x=10 \\
x=5 \\
y=2 \\
5+y=7 \\
y=2
\end{gathered}
$$

$$
x+y=5
$$

(2) $\times(-1)$

$$
-x-y=-5
$$

(1) $3 x+y=9$
(2) $x-1$:
(12) $x-1$:

$$
\begin{aligned}
& -2 x-y=-5-2 x-2 y=-16 \\
& -7 x+7=36
\end{aligned}
$$

(1) $4 x+y=11$ (1) $7 x+7 y=36$
$2:=4$
$x=2$

$$
\begin{gathered}
2 x=6 \\
x=3 \\
4 x+y=11
\end{gathered}
$$

$x+y=5 \quad x=3$
$y=3$ (1) $2 x+2 y=16$

$$
\begin{gathered}
5 x=20 \\
x=4
\end{gathered}
$$

$$
x=4
$$

$2+y=5$
$4(3)+y=11$

$$
12+y=11
$$

$$
y=-1
$$

(f) (1) $7 x+2 y=36$

$$
\left.\begin{array}{l}
2 a+3 b=40 \\
3 a+2 b=35 \text { (2) } \\
2 \times(1): 4 a+6 b
\end{array}\right)=80 \quad \begin{aligned}
-3 \times(2):-9 a-6 b & =-105 \\
-5 a & =-25 \\
2 & =5 \\
2 a+3 b & =40 \\
10+3 b & =40 \\
3 b & =30 \\
b & =10
\end{aligned}
$$

$$
\text { egg. 1) } \quad \begin{aligned}
& 7 b-5 c=35(1) \\
& 9 b-4 c=45 \text { (2) } \\
& 4 \times(1): 28 b-20 c=140 \\
&-5 \times(2):-45 b+20 c=-225 \\
&-17 b=-85 \\
& b=5 \\
& 7 b-5 c=35 \\
& 35-5 c=35 \\
&-5 c=0 \\
& c=0
\end{aligned}
$$

Starter

1) Simplify as much as possible:
a) $\frac{2 x^{2}+10 x+12}{2 x+6}$
b) $\sqrt[3]{c^{4}} \frac{1}{\sqrt[3]{c^{4}}}$
c) $\sqrt{40}-\sqrt{90}$
$=\frac{2\left(x^{2}+58+6\right)}{2(x+3)}=c^{\frac{4}{3} \times \frac{\sqrt[3]{c}}{c^{1 / 3}}}=\sqrt{4 \times 10}-\sqrt{9 \times 10}$
$=\frac{2(x+3)(x+2)}{2(x+3)}=c_{3 / 3}^{4 / 3} \times c^{-1 / 3}=2 \sqrt{10}-3 \sqrt{10}$

$$
=x+2=c
$$

Solving Simultaneous Equations
7110116
A Label the equations
Multiply each equation so you can cancel something out
Add the equations together
AT Solve
$\underset{\sim}{*}$ Substitute to find the other unknown
2) $\begin{aligned} 2 x+3 y & =7 \\ 4 x+5 y & =12\end{aligned}$
$\begin{aligned}-2 \times(1):-4 x-6 y & =-14 \\ \text { (2): } \quad 4 x+5 y & =12\end{aligned}$

$$
\begin{array}{r}
-y_{y}=-2 \\
=2
\end{array}
$$

$2 x+3 y=7$
$2 x+6=7$
$2 x=1$
$x=\frac{1}{2}$

Practising exam type questions.

