Starter - NO Calculators

1) Find 20% of 248
2) Find $3 \frac{1}{5}-1 \frac{3}{4}$
$10 \%=24.8$
$x 2$
$20 \%=49.6$
$\frac{16}{5}-\frac{7}{4}=\frac{64}{20}-\frac{35}{20}$ $=\frac{29}{20}$
Find the highest common factor of 14 and 49 .

$$
10 \%=28 \%=24
$$

4) Find 35% of $£ 80.5 \%=$ 5) Calculate $256 \div 64$

$$
\begin{aligned}
& 1 \%=0.0 \\
& \times 36 \\
& 30 \%=24 \\
& 728
\end{aligned}
$$

$$
\text { ate } 256 \div 64 \div 8
$$

$$
=32: 8=4 \text {. }
$$

$$
\frac{256}{64}=\frac{128}{32}=\frac{64}{16}
$$

$$
=\frac{32}{8}=4
$$

Today's Learning:

To revise volume of cubes, cuboids and prisms.

Volume of Prisms $\quad\|\| / 7$
A prism has the same cross-section all the way through its height.

$$
\text { Volume }=\text { cross section area } x \text { height }
$$

E.g. 1)

Starter

1) Solve for g :

$$
\begin{aligned}
& 34
\end{aligned}
$$

2) Without a calculator, find 0.34×1.3
$34 \times 13=442$
$3.4 \times 13=44.2$
$3.4 \times 13=44.2$
$0.34 \times 13=4 \cdot 42$
$0.34 \times 1.3=0.442$
3) Calculate $2+3\left(1+3^{2}\right)-3 \times 6$

$$
\begin{aligned}
& =0.4 r^{2} \\
& \text { late } 2+3(1+32)-3 \times 6 \\
& =2+3(1+9)-3 \times 6 \quad \frac{340}{0.442} \\
& =2+3(10)-3 \times 6 \\
& =2+30-3 \times 6=2+30-18=14 .
\end{aligned}
$$

4) If all the numbers from 1 to 20 are written on cards, and I pick a card at random, what is the probability that the number I pick is prime?

$$
\frac{8}{20}=\frac{4}{10}=\frac{2}{5}
$$

5) Multiply out and simplify: $2 \mathrm{~T}-2(\mathrm{~T}+1-3 \mathrm{~T})$

$$
\begin{gathered}
=2 T-2 T-2+6 T \\
=-2+6 T
\end{gathered}
$$

Volume of a Cylinder $\quad 121117$

$$
\underbrace{V=\pi r^{2} h}_{\text {*not given in exams }}
$$

Example 1:
Find the volume in litres, to 3 sig. fig

$$
\begin{aligned}
V & =\pi r^{2} h \quad r=25 \mathrm{~cm} \\
& =\pi \times 25^{2} \times 70 \\
& =137444.67 . . \mathrm{cm}^{3} \\
& =137,000 \mathrm{~cm}^{3}(35 . f .)
\end{aligned}
$$

50 cm

2) Find the volume of the trough in litres, correct to 2 dip.

$$
\begin{aligned}
& V=\pi^{2} \mathrm{~h} \\
&=\pi \times 24^{2} \times 150 \\
&=271,433.6053 \\
& \div 2 \\
& \dot{U}_{\text {trough }}=135,716.8026 \mathrm{~cm}^{3} \\
&=135,716.80 \mathrm{~cm}^{3}\left(2 \mathrm{dp}^{2}\right)
\end{aligned}
$$

This is a section of a water pipe.
The inside of the pipe has a diameter of 17 cm . How much water can this pipe hold?

$$
\begin{align*}
& 17 \div 2=8.5 \mathrm{ch} \\
& V_{\text {ier }}=4 r^{2} \mathrm{~h}
\end{align*}
$$

$$
=\pi \times 8 \cdot 5^{2} \times 320
$$

$$
\begin{aligned}
& =72633.6 \ldots \mathrm{~cm} \\
& =72600 \mathrm{ml}(3 \mathrm{s.f}) \\
& =72.6 \mathrm{~L} .
\end{aligned}
$$

Find the radius of the can.

$$
\begin{aligned}
& V= \pi r^{2} h \\
& 500=\pi \times r^{2} \times 15 \\
& \div \div 15 \\
& \frac{500}{15}=\pi r r^{2} \\
& \div \pi \quad \div \pi \\
& 500 \div 15 \div \pi=r^{2} \\
& r^{2}=10.610 \cdots \\
& r=\sqrt{10.610} \\
&=3.26 \text { (3s.f.) }
\end{aligned}
$$

Challenge: This wrapper is curved around a can so its edges just meet. What is the volume of the can?

Volume of a Cone
 1611117

$V=\frac{1}{3} \pi r^{2} h$
*given in exams
e.g. 1) Calculate the volume of this cone.
$V=\frac{1}{3} \times \pi \times r^{2} \times h$
$=\frac{1}{3} \times \pi \times 10^{2} \times 42$
$=4398.229 \ldots$
20 cm

$$
=4400 \mathrm{~cm}^{3}(35 \cdot f .
$$

Today's Learning:

To calculate the volume of any cone.

Volume of a Sphere

$$
\mathrm{V}=\frac{4}{3} \pi r^{3}
$$

given in exams
e.g. 1) Find the volume of this sphere.

$$
\begin{aligned}
\text { Pere } & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \times 7 \times 6^{3} \\
& =904 \cdot 778 . . . \mathrm{cm}^{3} \\
& =905 \mathrm{~cm}^{3}(3 \mathrm{sf.} .)
\end{aligned}
$$

Find the volume of this object, made up of a hemisphere, a cylinder and a cone:

$\begin{aligned} & \div 2 \\ & \text { Volume }\end{aligned}=5747.02 \mathrm{~cm}^{3}$
$=5700 \mathrm{~cm}^{3}(25 . f$.

Starter

1) Multiply out the brackets: $37(2-T) 6 T-3 T^{2}$
2) Factorise by taking out a common factor: $4 m n+2 m^{2}$
3) Calculate $\frac{1}{8}+\frac{3}{5} \quad \frac{29}{40}$
$2 m(2 n+m)$
4) Calculate $\frac{2}{5} \times \frac{1}{3} \frac{2}{15}$

23
5) Calculate $2.3 \times 4 \quad 9.2 \frac{1 \times 4}{9.2}$

Volume of a Pyramid $\quad 18 / 1 / 17$

$V=\frac{1}{3} x$ base area x perpendicular height
examgives $V=\frac{1}{3} A h$
e.g. 1) Find the volume of this square based pyramid.
 exam gives

$$
\begin{aligned}
\text { Area } & =L \times B \\
& =8 \times 8=64 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{1}{3} \mathrm{Ah} \\
& =\frac{1}{3} \times 64 \times 12=256 \mathrm{~cm}^{3}
\end{aligned}
$$

The volume of this sphere is $4189 \mathrm{~cm}^{3}$
Calculate the radius of this sphere.

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& 4189=\frac{4}{3} \times \pi x r^{3} \\
& 4189 \div \frac{4}{3}=\pi \times r^{3} \quad r^{3}=1006.05 \\
& 4189 \div \frac{4}{3} \div \pi=r^{3} \quad r=\sqrt{1000.05} \\
&=10.0 \mathrm{~cm}(3 \mathrm{sf})
\end{aligned}
$$

A cylindrical beaker shown on the left is full of water. If the water is poured into the beaker on the right, will it overflow?

The rectangular block of metal shown is melted down to make metal balls with radius 1 cm . How many balls can be made?

A paperweight is made of solid plastic. It's height must be 6 cm . The manufacturer must decide between the cone and pyramid shown. Which one requires less plastic to make?

Starter

1) Multiply out the brackets: $3 b(e+2) \quad 2 \quad 3 b l+6 b$
2) Without a calculator, calculate $\frac{2}{3}-\frac{8}{11} 3 b l+6 b$

$$
=\frac{22}{33}-\frac{24}{33}=\frac{-2}{33}-\frac{2}{33}
$$

3) Find the lowest common multiple of 12 and 10.60
4) Decrease $£ 200$ by $45 \% \mathcal{Z 1 1 0 \quad 1 0 \% = Z 2 0} \begin{aligned} & 40 \%=780 \quad 5 \%=210\end{aligned}$
5) If the numbers 1 to 100 are written on cards, and I pick one out at random, what is the probability the card has a 9 on it?

$$
\frac{19}{100}
$$

