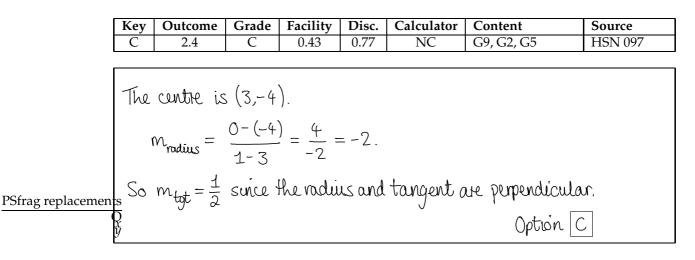
Ο

 $_{y}^{x}$ Quest

Higher Mathematics

Circle


Paper 1 Section A

Each correct answer in this section is worth two marks.

1. A circle has equation $(x - 3)^2 + (y + 4)^2 = 20$.

Find the gradient of the tangent to the circle at the point (1, 0).

- A. -2
- B. $-\frac{1}{2}$
- C. $\frac{1}{2}$
- D. 2

[END OF PAPER 1 SECTION A]

4

3

3

4

Paper 1 Section B

- [SQA] 2. Circle P has equation $x^2 + y^2 8x 10y + 9 = 0$. Circle Q has centre (-2, -1) and radius $2\sqrt{2}$.
 - (a) (i) Show that the radius of circle P is $4\sqrt{2}$.
 - (ii) Hence show that circles P and Q touch.
 - (b) Find the equation of the tangent to the circle Q at the point (-4, 1).
 - (*c*) The tangent in (*b*) intersects circle P in two points. Find the *x*-coordinates of the points of intersection, expressing you answers in the form $a \pm b\sqrt{3}$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4				
<i>(a)</i>	2	С	CN	G9	proof	2001 P1 Q11				
<i>(a)</i>	2	A/B	CN	G14						
<i>(b)</i>	3	С	CN	G11	y = x + 5					
(C)	3	С	CN	G12	$x = 2 \pm 2\sqrt{3}$					
• ² • ³	ic: inte ss: finc ss: finc pd: con centres	l radius l sum of	of circle radii		• ¹ $C_{\rm P} = (4,5)$ • ² $r_{\rm P} = \sqrt{16+25-9} = \sqrt{32} = 4\sqrt{2}$ • ³ $r_{\rm P} + r_{\rm Q} = 4\sqrt{2} + 2\sqrt{2} = 6\sqrt{2}$ • ⁴ $C_{\rm P}C_{\rm Q} = \sqrt{6^2+6^2} = 6\sqrt{2}$ and "so touch"					
• ⁶ • ⁷	ss: finc ss: use ic: stat ss: sub	$m_1m_2 =$ The equation	= -1 on of ta	ngent	• ⁵ $m_{\rm r} = -1$ • ⁶ $m_{\rm tgt} = +1$ • ⁷ $y - 1 = 1(x + 4)$ • ⁸ $x^2 + (x + 5)^2 - 8x - 10(x + 4)$	- 5) - 9 - 0				
•9	pd: exp pd: solv	ress in s	tandard	l form	• $x^{2} + (x+3)^{2} - 8x - 10(x + 3)^{2}$ • $2x^{2} - 8x - 16 = 0$ • $x^{10} = 2 \pm 2\sqrt{3}$	+3) + 9 = 0				

[SQA] 3. The point P(2,3) lies on the circle $(x + 1)^2 + (y - 1)^2 = 13$. Find the equation of the tangent at P.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	4	С	CN	G11	2y + 3x = 12	2002 P1 Q1
• ² • ³	circle ss: knc	ow to fin w to fin	d gradi d perp.	com equ. of ent of radius gradient ngent	• ¹ $C = (-1, 1)$ • ² $m_{\text{rad}} = \frac{2}{3}$ • ³ $m_{\text{tgt}} = -\frac{3}{2}$ • ⁴ $y - 3 = -\frac{3}{2}(x - 2)$	

5

[SQA]	4. For what range of values of k does the equation $x^2 + y^2 + 4kx - 2ky - k - 2 = 0$
	represent a circle?

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	5	Α	NC	G9, A17	for all <i>k</i>	2000 P1 Q6
\bullet^2 \bullet^3 \bullet^4		cess cess erpret qu	ıadratic	adius inequation inequation	• ¹ $g = 2k, f = -k, c =$ stated or implied by • • ² $r^2 = 5k^2 + k + 2$ • ³ (real $r \Rightarrow$) $5k^2 + k +$ • ⁴ use discr. or compl • ⁵ true for all k	2 - 2 > 0 (accept \geq)

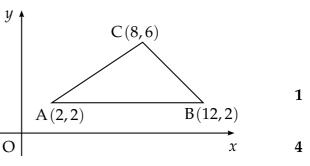
[END OF PAPER 1 SECTION B]

Paper 2

[SQA]

1. Find the equation of the tangent at the point (3,4) on the circle $x^2 + y^2 + 2x - 4y - 15 = 0$.

TKS	Unit	non-calc		calc		calc neut		Conte	nt Reference :	1.1
oart marks		C	A/B	С	A/B	С	A/B	Main	Additional	
	1.1					4		1.1.1	1.1.9, 2.4.2	Source 1996 P1 qu.4
1	umbro -	(12)								
		- 19 - IS								
² n	n _{radius} =	12								
3 n	$n_{tgt} = -2$									
• ⁴ 3	/-4=-2	(x-3)								
	1 c	$m_{radius} = \frac{1}{2}$	$\begin{array}{c} \bullet \\ \bullet $	• ¹ centre = (-1,2)	$m_{radius} = \frac{1}{2}$	$m_{radius} = \frac{1}{2}$	$m_{radius} = \frac{1}{2}$	• centre = (-1,2) • $m_{radius} = \frac{1}{2}$	$m_{radius} = \frac{1}{2}$	$m_{radius} = \frac{1}{2}$

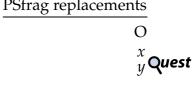

frag replacements

 $\begin{bmatrix} x \\ y \end{bmatrix}$

0

- [SQA] 2. Triangle ABC has vertices A(2,2), B(12,2) and C(8,6). PSfrag replacements
 - (*a*) Write down the equation of l_1 , the perpendicular bisector of AB.
 - (*b*) Find the equation of l_2 , the perpendicular bisector of AC.
 - (c) Find the point of intersection of lines l_1 and l_2 .
 - (*d*) Hence find the equation of the circle passing through A, B and C.

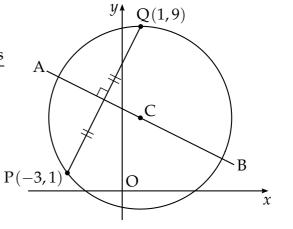
PStrag replacements


Ο

 y^{x} Quest

1

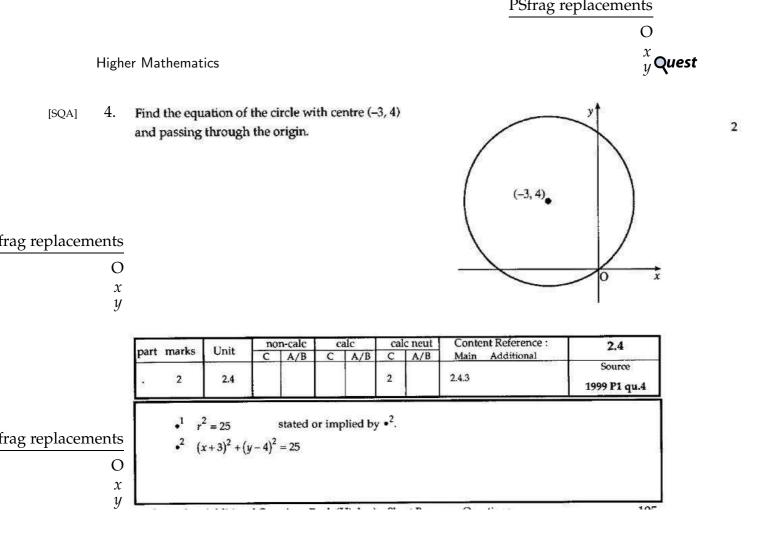
Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	1	С	CN	G3, G7	x = 7	2001 P2 Q7
<i>(b)</i>	4	С	CN	G7	3x + 2y = 23	
(C)	1	С	CN	G8	(7,1)	
(d)	2	A/B	CN	G8, G9, G10	$(x-7)^2 + (y-1)^2 = 26$	
•2 •3 •4 •5 •6 •7	pd: pro ss: finc ic: stat ic: stat pd: finc	cess coo l gradien e gradie e equati l pt of in standar	rd. of a nt of AC ent of pe on of st ntersecti rd form	erpendicular raight line on of circle equ.	• ¹ $x = 7$ • ² midpoint = (5,4) • ³ $m_{AC} = \frac{2}{3}$ • ⁴ $m_{\perp} = -\frac{3}{2}$ • ⁵ $y - 4 = -\frac{3}{2}(x - 5)$ • ⁶ $x = 7, y = 1$ • ⁷ $(x - 7)^2 + (y - 1)^2$ • ⁸ $(x - 7)^2 + (y - 1)^2 = 26$ or • ⁷ $x^2 + y^2 - 14x - 2y + c = 6$ • ⁸ $c = 24$	0



- [SQA] 3. (*a*) Find the equation of AB, the perpendicular bisector of the line joing the points P(-3,1) and Q(1,9). PSfrag replacements
 - (*b*) C is the centre of a circle passing through P and Q. Given that QC is parallel to the *y*-axis, determine the equation of the circle.
 - (*c*) The tangents at P and Q intersect at T.

Write down

- (i) the equation of the tangent at Q
- (ii) the coordinates of T.


2

4

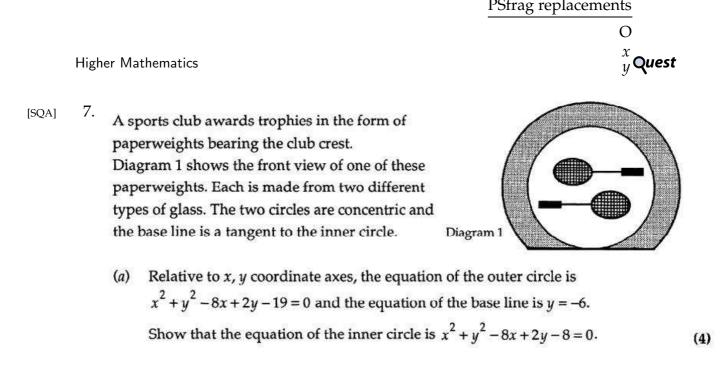
3

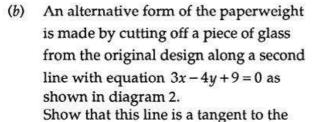
Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	4	С	CN	G7	x + 2y = 9	2000 P2 Q2
<i>(b)</i>	3	С	CN	G10	$(x-1)^2 + (y-4)^2 = 25$	
(C)	2	С	CN	G11, G8	(i) $y = 9$, (ii) T(-9,9)	
•2 •3 •4 •5 •6 •7 •8	ic: stat	cess gra ow how t e equ. o erpret "p cess rad e equ. o erpret di	dient of to find p f line parallel ius f circle agram	PQ perp. gradient to <i>y-</i> axis″	• ¹ midpoint = (-1, 5) • ² $m_{PQ} = \frac{9-1}{1-(-1)}$ • ³ $m_{\perp} = -\frac{1}{2}$ • ⁴ $y - 5 = -\frac{1}{2}(x - (-1))$ • ⁵ $y_{C} = 4$ stated or implied b • ⁶ radius = 5 or equiv. stated or implied by • ⁷ • ⁷ $(x - 1)^{2} + (y - 4)^{2} = 25$ • ⁸ $y = 9$ • ⁹ T= (-9, 9)	y • ⁷

[SQA] 5. Find the equation of the circle which has P(-2, -1) and Q(4, 5) as the end points of a diameter.

	10	1000	Unit	non-c		on-calc calc		cal	lc neut	Content Reference :	2.4
	part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	1 PEDADAS
		3	2.4					3		2.4.3	Source 1995 P1 qu.9
		•1	(1.2)		ana an	1					
ag replacements	5		$\frac{(1,2)}{\sqrt{(4-1)^2}}$	+ (5	$\overline{2}^{2}$ or c	min					
ug repræsererer C)		$(x-1)^2 +$								
x		1 €2	(x-1) +	(y-2)	= 18 (or equ	uv.				

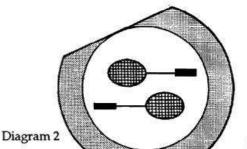
replacements


0 х SN.uk.net y


6

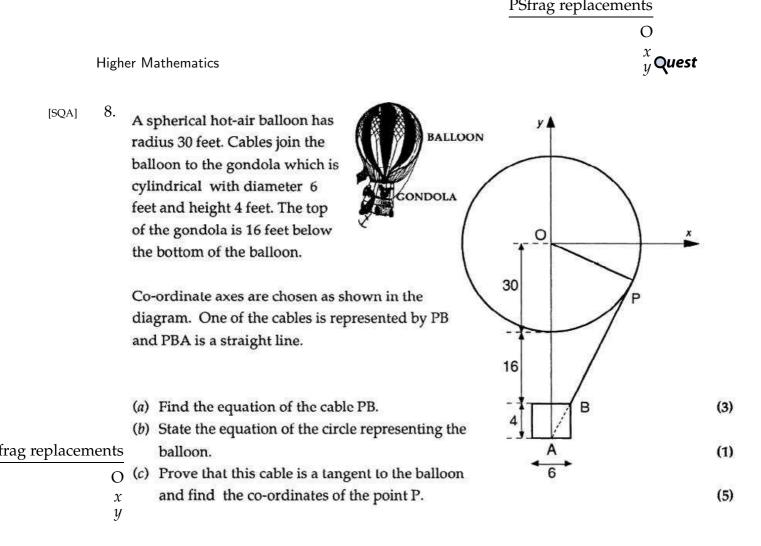
[SQA] 6. The line y = -1 is a tangent to a circle which passes through (0,0) and (6,0). Find the equation of this circle.

		manila	Linit	Unit non-calc		calc		calc neut		Content Reference :			e:	2.4
	part	marks	Unit	C A/	A/B	Ć	A/B	C	A/B	Main	Additi	Additional		1000
	8	6	2.4					1	5	2.4.3	0.1			Source 1996 P1 qu.20
Frag replacements O x y	1 2 3 4 5 6	Centre C $CO^2 = Cl$ y = 4 radius = 5	p ²		(3,-1)	OR	• ³ (x - 3) ² + reduce to (= 4	$(y-k)^2 = r^2$ $(-1-k)^2 = r^2$ $x^2 - \epsilon x + (2)$ $(y-4)^2 = 25$	has '=' root k+1)	OR s	•2 •3 •4 •5	$x^{2} + y^{2} + (0,0) \Rightarrow c$ $(6,0) \Rightarrow (3,-1) \Rightarrow (3$	t =3



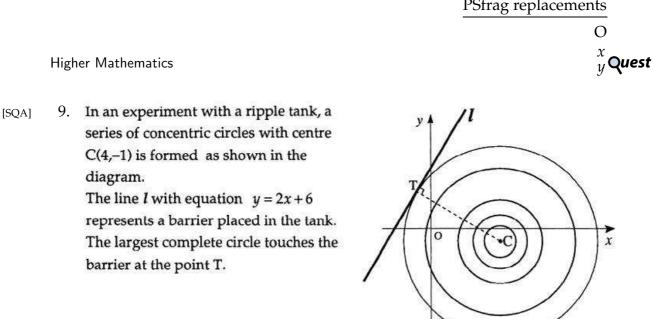
frag replacements

Oxy


inner circle and state the coordinates of the point of contact.

(7)

narks	Unit		non-calc calc			- u	c neut	Content Reference :	24		
	10 million - 10 million	C	A/B	C	A/B	С	A/B	Main Additional	2.4		
4	2.4					4		2.4.3	Source		
· · · · · · · · · · · · · · · · · · ·	044040					0.04	4		1990 Paper 2		
<u></u>	2.4	1					T		Qu. 8		
• ¹ ce	entre = (4)	-1)									
			= 25								
	18										
• ⁵ e.	$g. \ x = \frac{4}{3}y$	/-3									
• (4	$(\frac{4}{3}y-3)^2 +$	$y^2 - 8$	$8\left(\frac{4}{3}y-3\right)$) + 2y	-8 = 0						
•7 <u>10</u>	$\frac{6}{7}y^2 - 8y$	+9+y	$^{2}-\frac{32}{3}y$	+ 24 +	2y - 8						
	-	$s \Rightarrow 1$	ine is a t	angei	nt						
•" (1	l,3)										
	• ² in • ³ (x • ⁴ cc • ⁵ e. • ⁶ (³ / ₁) • ⁷ 11 9 • ⁸ y • ⁹ e. • ¹⁰ e	• ¹ centre = (4, • ² inner radiu • ³ $(x-4)^2 + (y-3)^2 + (y$	• ¹ centre = (4, -1) • ² inner radius = 5 • ³ $(x-4)^2 + (y+1)^2$ • ⁴ completing argum • ⁵ e.g. $x = \frac{4}{3}y - 3$ • ⁶ $(\frac{4}{3}y - 3)^2 + y^2 - 8$ • ⁷ $\frac{16}{9}y^2 - 8y + 9 + y$ • ⁸ $y^2 - 6y + 9 = 0$ • ⁹ e.g. $(y-3)(y-3)$ • ¹⁰ equal roots $\Rightarrow 1$	• ¹ centre = (4, -1) • ² inner radius = 5 • ³ (x-4) ² + (y+1) ² = 25 • ⁴ completing argument • ⁵ e.g. $x = \frac{4}{3}y - 3$ • ⁶ $(\frac{4}{3}y - 3)^2 + y^2 - 8(\frac{4}{3}y - 3)^2$ • ⁷ $\frac{16}{9}y^2 - 8y + 9 + y^2 - \frac{32}{3}y + \frac$	• ¹ centre = (4, -1) • ² inner radius = 5 • ³ (x-4) ² + (y+1) ² = 25 • ⁴ completing argument • ⁵ e.g. $x = \frac{4}{3}y - 3$ • ⁶ $(\frac{4}{3}y - 3)^2 + y^2 - 8(\frac{4}{3}y - 3) + 2y$ • ⁷ $\frac{16}{9}y^2 - 8y + 9 + y^2 - \frac{32}{3}y + 24 + \frac{8}{3}y^2 - 6y + 9 = 0$ • ⁹ e.g. $(y-3)(y-3) = 0$ • ¹⁰ equal roots ⇒ line is a tangent	• ¹ centre = (4, -1) • ² inner radius = 5 • ³ (x-4) ² + (y+1) ² = 25 • ⁴ completing argument • ⁵ e.g. $x = \frac{4}{3}y-3$ • ⁶ $(\frac{4}{3}y-3)^2 + y^2 - 8(\frac{4}{3}y-3) + 2y-8 = 0$ • ⁷ $\frac{16}{9}y^2 - 8y + 9 + y^2 - \frac{32}{3}y + 24 + 2y - 8$ • ⁸ $y^2 - 6y + 9 = 0$ • ⁹ e.g. (y-3)(y-3) = 0 • ¹⁰ equal roots ⇒ line is a tangent	• ¹ centre = (4, -1) • ² inner radius = 5 • ³ (x-4) ² + (y+1) ² = 25 • ⁴ completing argument • ⁵ e.g. $x = \frac{4}{3}y - 3$ • ⁶ $(\frac{4}{3}y - 3)^2 + y^2 - 8(\frac{4}{3}y - 3) + 2y - 8 = 0$ • ⁷ $\frac{16}{9}y^2 - 8y + 9 + y^2 - \frac{32}{3}y + 24 + 2y - 8$ • ⁸ $y^2 - 6y + 9 = 0$ • ⁹ e.g. (y-3)(y-3) = 0 • ¹⁰ equal roots ⇒ line is a tangent	• ¹ centre = (4, -1) • ² inner radius = 5 • ³ (x-4) ² + (y+1) ² = 25 • ⁴ completing argument • ⁵ e.g. $x = \frac{4}{3}y - 3$ • ⁶ $(\frac{4}{3}y - 3)^2 + y^2 - 8(\frac{4}{3}y - 3) + 2y - 8 = 0$ • ⁷ $\frac{16}{9}y^2 - 8y + 9 + y^2 - \frac{32}{3}y + 24 + 2y - 8$ • ⁸ $y^2 - 6y + 9 = 0$ • ⁹ e.g. $(y-3)(y-3) = 0$ • ¹⁰ equal roots ⇒ line is a tangent	• ¹ centre = (4, -1) • ² inner radius = 5 • ³ (x-4) ² + (y+1) ² = 25 • ⁴ completing argument • ⁵ e.g. $x = \frac{4}{3}y - 3$ • ⁶ $(\frac{4}{3}y - 3)^2 + y^2 - 8(\frac{4}{3}y - 3) + 2y - 8 = 0$ • ⁷ $\frac{16}{9}y^2 - 8y + 9 + y^2 - \frac{32}{3}y + 24 + 2y - 8$ • ⁸ $y^2 - 6y + 9 = 0$ • ⁹ e.g. $(y-3)(y-3) = 0$ • ¹⁰ equal roots ⇒ line is a tangent		


frag replacements

		manles	Theit	no	n-calc	c	alc	cal	lc neut	Content Reference :	
	part	marks	Unit	C	A/B	C	A/B	C	A/B	Main Additional	2.4
	(a)	3	1.1					3		1.1.1, 1.1.7	Source
	(b)	1	2.4					1		2.4.3	1992 Paper 2
	(c)	5	2.4					2	3	2.4.4	Qu.9
	(a)	• ¹ 5	Strategy: k	now t	o find m	0					
		•2	$m=\frac{4}{3}$								
		•3	$y + 46 = \frac{4}{3}$	(x - 3)							
	(b)	.4	$x^2 + y^2 = 2$	900 or	eouival	ent					
					-4						
	me d										
	(c)	5	•								
	(0)		Strategy: k			tute					
		•6	$x^{2} + \left(\frac{4}{3}x - \frac{4}{3}x\right)$	$(50)^2 =$	= 900						
1 .			$(x-24)^2$ or	100		diecri	minant				
rag replacements	5	0									
С			communic	cation	relating	to tar	ngency				
		•9	(24, -18)								
x											

replacements

y L

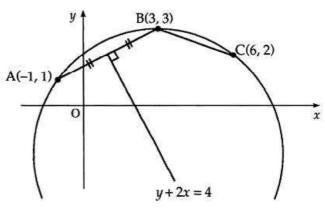
frag replacements (a) Find the equation of the radius CT.

Ο

x (b) Find the equation of the largest complete circle. y

	part	marks	Unit	no	n-calc	c	alc	cal	c neut	Content Reference :	2.4
	(a) (b)	3 5	1.1 2.4	С	A/B	С	A/B	C 3 5	A/B	Main Additional 1.1.9, 1.1.7 2.4.3	Source 1993 Paper 2 Qu.3
	(a)	• m_l • m_r • m_r	$= 2$ $= -\frac{1}{2}$ $-1 = -\frac{1}{2}(x)$	-4)							
	(b)	• ⁵ (x • ⁶ 5:	$(x-4)^{2} + (y)^{2} + (x^{2} + 20x)^{2} + (x$	$(65-r)^2$	$r^2 = r^2$ $r^2 = 0$)					
frag replacements O		• ⁸ r ²	² = 45								

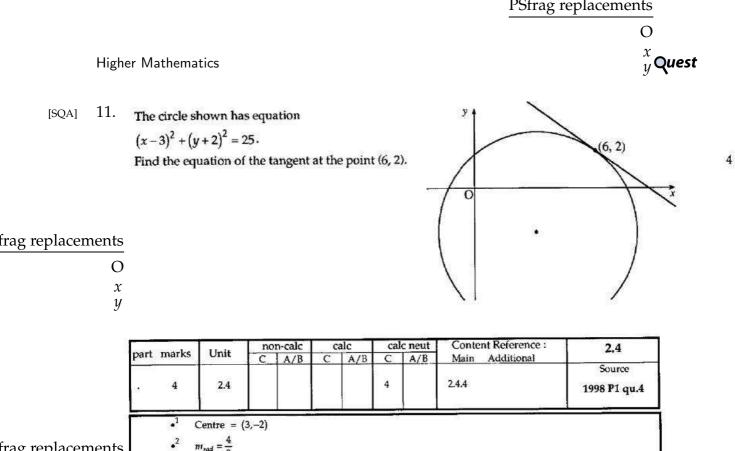
replacements


O *x y* ∽**hsn**.uk.net (3) (5)

(4)

(6)

[SQA] 10. (a) In the diagram, A is the point (-1, 1), B is (3, 3) and C is (6, 2). The perpendicular bisector of AB has equation y + 2x = 4. Find the equation of the perpendicular bisector of BC.


frag replacements

O (b) Find the centre and the equation of the circle which passes through A, B

 $\begin{array}{c} x \\ y \end{array}$ and C.

mant	marks	Unit		n-calc		alc		c neut	Content Reference :	2.4
part	marks	Unit	C	A/B	C	A/B	C	A/B	Main Additional	
(a)	4	1.1					4		1.1.9, 1.1.7	Source
(b)	6	2.4		8			6		2.4.3, 1.1.2	1991 Paper .
(0)	0	2.4					0		2.4.3, 1.1.2	Qu. 2
(a) (b)	2 3 4 5 6 7 8 9	$m_{RC} = -\frac{1}{3}$ midpoint _I $y - \frac{5}{2} = 3(x$ y - 3x = -1 perp. bised using $y - (3, -2)$ $r^{2} = 25$ $(x - 3)^{2} + (3, -2)$	$3C = \left(\frac{9}{2} - \frac{9}{2}\right)$ 11 ctor pa 3x = -	asses thr -11 and			ed exp	licitly		

frag replacements

frag replacements

 $m_{rad} = \frac{4}{3}$

migt

y - 2 = -

(x-6)

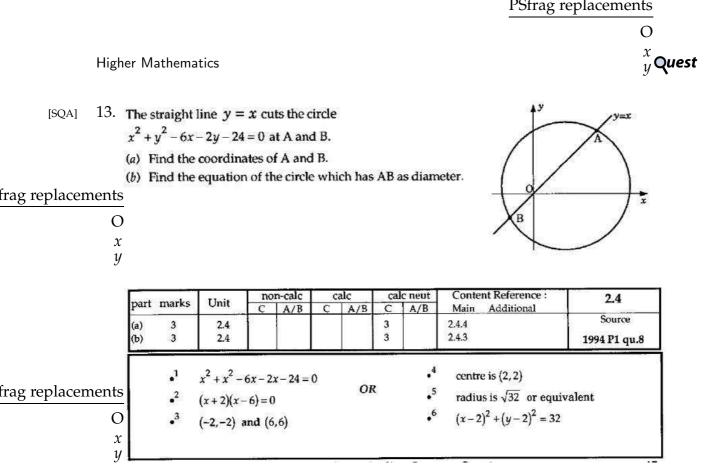
.3

.4

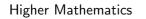
Ο

x

y


[SQA] 12. Find the equation of the tangent at the point (3,1) on the circle $x^2 + y^2 - 4x + 6y - 4 = 0.$

l.		Their	no	n-calc	C	alc	cal	c neut	Content Reference :	2.4
part	marks	Unit	C	A/B	C	A/B	Ç	A/B	Main Additional	
19) 19	5	2.4					5		2.4.4	Source 1991 P1 qu.8
	• ¹ st	rat:use cer	tre and	itgt⊥ ra	adius				No.	
	• ² ce	ntre = (2, -	3)							
el .	• ³ m	radius = 4								
	• ⁴ m	$tgt = -\frac{1}{4}$							100 H	
	1235	$-1 = -\frac{1}{4}(x)$								


frag replaceme

replacements

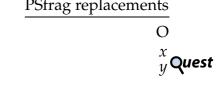
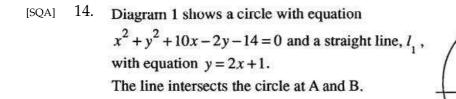
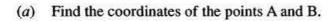
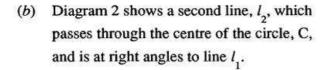
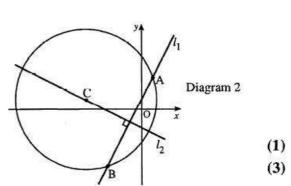





Diagram 1

(5)



Write down the coordinates of C.

Find the equation of the line l_2 .

frag replacements

Oxy (i)

(ii)

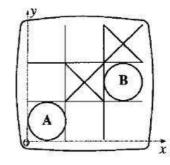
		Their	no	n-calc	C	alc	cal	c neut	Content Reference :	2.4
part	marks	Unit	C	A/B	C	A/B	C	A/B	Main Additional	
(a)	5	2.4					5		2.4.4	Source
(<i>b</i>)i	1	2.4			[1		2.4.2	1997 Paper 2
(<i>b</i>)ii	3	1,1					3		1.1.10 1.1.7	Qu.1
						~~~				
(a)	•1	know to s	ubstit	tute						
	•2	correct su	bstitu	ition						
	•3	a "quadr	atic"	= 0						
		x = -3, 1 y = -5, 3								
	5	v 5 3								
		<i>y</i> - <i>i</i> -								
(b)	•6	m _{diameter}	= 2							
	.7			1						
		m _{perpendi}	icular =	= - 12						
	.8	centre =	(-1,	- 1)						
	. ⁸ .9	equation:			+1)					
		equation	9.1	2 ***	,					

#### frag replacements

#### replacements

y

	in the second	70000 <b>1</b> 001	These	no	n-calc	C	alc	cal	c neut	Content Reference :	2,4
	part	marks	Unit	C	A/B	C	A/B	С	A/B	Main Additional	
5		5	2.4			86.531 V		2	з	2.4.4	Source 1989 P1 qu.18
			$\frac{x^2}{x^2-2kx+1}$		i = 0						
ag replacements	-	• $2x^2 - 2act + x^2 - 10 = 0$ • $3 \text{ strat: } b^2 - 4ac'' = 0$									
O x y	<u>'</u>		$-2k)^2 - 4.2$	$(k^2 - 1)$	18)						
	• $k = \pm 6$										


15. Find the possible values of k for which the line x - y = k is a tangent to the circle [SQA]  $x^2 + y^2 = 18.$ 

16. This diagram shows a computer-generated display of [SQA] a game of noughts and crosses. Relative to the coordinate axes which have been added to the display, the "nought" at A is represented

by a circle with equation  $(x-2)^2 + (y-2)^2 = 4$ .

frag replacements

- Ο (a) Find the centre of the circle at B.
- x (b) Find the equation of the circle at B. y



3 1

2

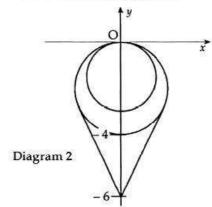
5

I		an and so	These	no	n-calc	C	alc	ca	lc neut	Content Reference :	2.4
	part	marks	Unit	C	A/B	C	A/B	С	A/B	Main Additional	<b>*</b> **
	(a)	3	2.4			Gente Ossinder		3		2.4.1	Source
	(b)	1	2.4	i.	1			1		2.4.3	1993 P1 qu.5
ag replacements			adius _A = 2 entre _A = (								
0			entre _B = (								
x		·4 (	$(x-10)^2 +$	(4-6)	$^{2} = 4$						

17. Explain why the equation  $x^2 + y^2 + 2x + 3y + 5 = 0$  does **not** represent a circle. [SQA]

calc neut Content Reference : non-calc calc 2.4 part marks Unit Main Additional A/B A/B C A/B C Source 2 2.4.2 2 2.4 1993 P1 qu.18 •  $g^2 + f^2 - c = -1\frac{3}{4}$ frag replacements •²  $r = \sqrt{-1\frac{3}{4}}$  which is not possible Ο replacements x y Ο Questions marked '[SQA]' © SQA х y hsn.uk.net All others © Higher Still Notes

3


	0.0000		Lind	no	n-calc	C	alc	ca	c neut	Content Reference :	2.4
	part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	4
		3	2.4	5 		8.41		2	1	2.4.2	Source 1997 P1 qu.14
		1	2 ,2	0						11 A. 2 M 1	
	1	- ÷ ;	$g^+ + f^ c$	>0							
g replacements	1	•2 ;	$g^2 + f^2 - a$ $r^2 = 9 + 4$	- <i>c</i>							
0		•3	: < 13								
0	1										
x											

[SQA] 18. For what range of values of *c* does the equation  $x^2 + y^2 - 6x + 4y + c = 0$  represent a circle?

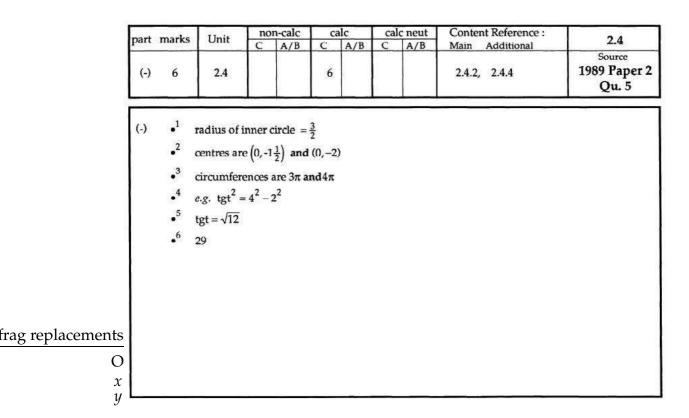


[SQA] 19. An ear-ring is to be made from silver wire and is designed in the shape of two touching circles with two tangents to the outer circle as shown in Diagram 1.



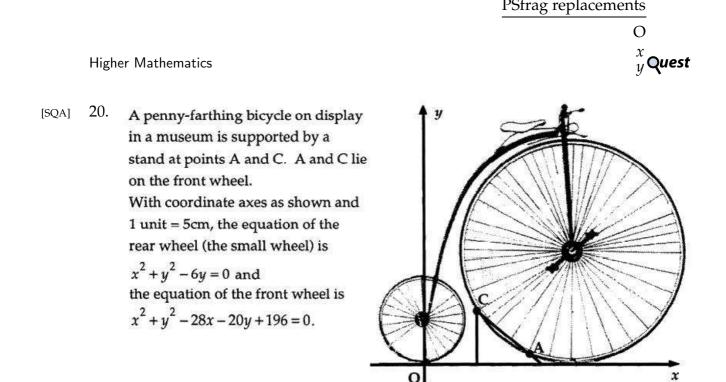


(6)


Diagram 2 shows a drawing of this ear-ring related to the coordinate axes. The circles touch at (0, 0).

The equation of the inner circle is  $x^2 + y^2 + 3y = 0$ .

frag replacements The outer circle intersects the y-axis at (0, -4).


O The tangents meet the y-axis at (0, -6).

 $\frac{x}{y}$  Find the total length of silver wire required to make this ear-ring.



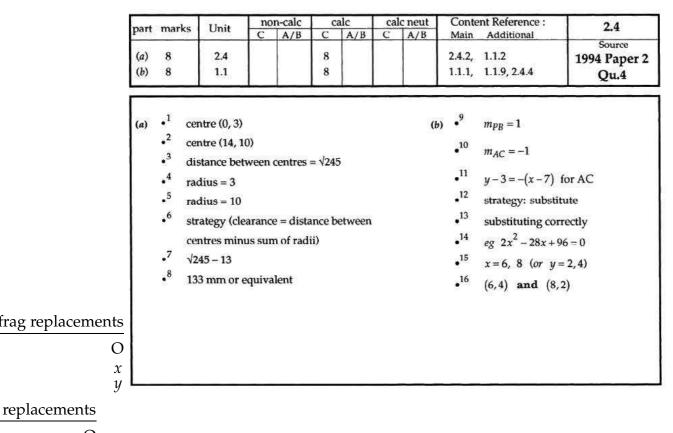
replacements

O *x y* **bsn**.uk.net



- (a) (i) Find the distance between the centres of the two wheels.
  - (ii) Hence calculate the clearance, i.e. the smallest gap, between the front and rear wheels. Give your answer to the nearest millimetre.

(8)


(8)

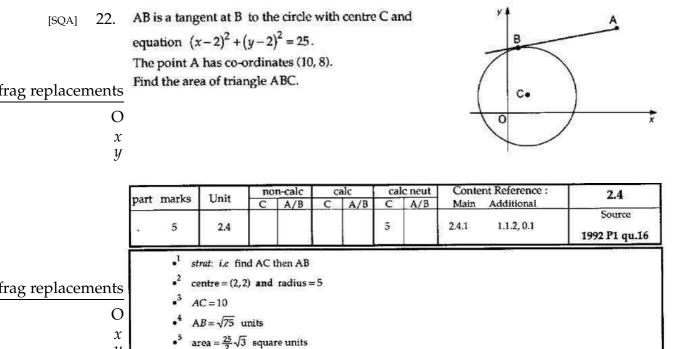



- (i) Find the gradient of PB.
- (ii) Hence find the equation of AC and the coordinates of A and C.

x y

Ο




[SQA] 21. An ancient Stone Circle has a processional pathway from the Heelstone to the centre of the Stone Circle. In the picture above, the Heelstone is on the left and the dotted line represents the processional pathway. With suitable axes and using the heelstone as the origin, the equation of the Stone Circle is



# frag replacements $x^2 + y^2 - 8x - 6y + 21 = 0$ .

- $\overline{O}$  Given that 1 unit represents 15 metres, calculate the
  - distance in metres from the Heelstone to the nearest point
- $\frac{x}{y}$  on the edge of the Circle.

	Γ		T 1 14	no	n-calc	C	alc	cal	lc neut	Conte	nt Reference :	2.4
	part	marks	Unit	C	A/B	Ċ	A/B	C	A/B	Main	Additional	
	5	-						-		0.10	110.01	Source
	383	5	2.4	(h)				5		2.4.2	1.1 <b>.2</b> , 0.1	1992 P1 qu.9
	<b></b>	• ¹ st	trat:e.g. 0	rigin to	o centre	- radi	us		10) 100L	20 1		
a ronla comonto	5.		entre = (4,	150								
ag replacements												
O x		•³ ra	adius = 2	units								
		• ⁴ o	rigin to ce	ntre =	5 units							
		5 4	5m									



#### replacements

O *x y* ∽hsn.uk.net

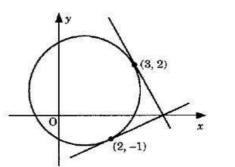
y

PStrag replacements



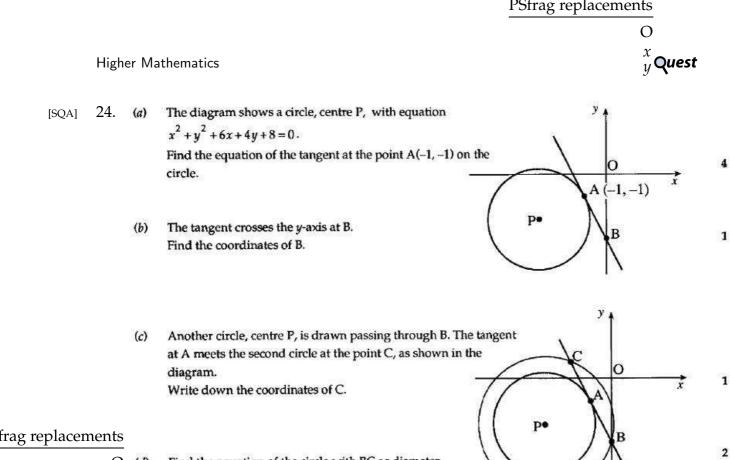
4

Higher Mathematics


[SQA] 23. The circle shown in the diagram has equation

$$(x-1)^2 + (y-1)^2 = 5$$
.

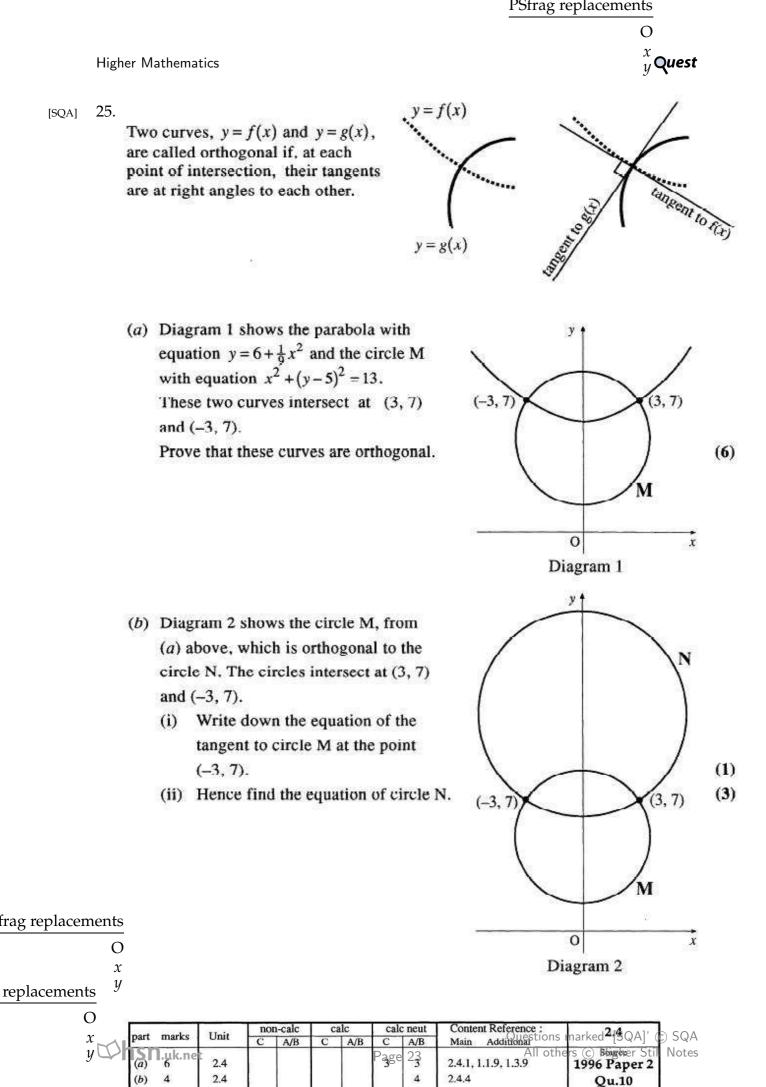
Tangents are drawn at the points (3, 2) and (2, -1). Write down the coordinates of the centre of the circle and


frag replacements hence show that the tangents are perpendicular to each other.

y



	00000070	art marks	Unit	no	n-calc	С	alc	cal	c neut	Content Reference :	2.4
	part		Unit	C	A/B	C	A/B	C	A/B	Main Additional	
								1 4		A.1. 110	Source
	<b>2</b> 5	4	2.4					4		2.4.1 1.1.9	1994 P1 qu.5
	1	centre	= (1, 1)					Ľ,	centre = (	(1 1)	<u>`_\</u>
	.2										B (3, 2)
ag replacements	•	m _{radii}	$=\frac{1}{2}, -2$			OR		1	r=√5,	$d = \sqrt{10}$	- A
О	•3	m _{tgts} =	$=-2, \frac{1}{2}$					3 5	Show A	$\hat{C}B = 90^\circ$	1/2.
x	•4	-2 ×	$\frac{1}{2} = -1 \Rightarrow$	tgts a	re ⊥		•	4 5	State tan	igents $\perp$ to radii	A(2, -1)
y y			* :	27 <b>7</b> -08-90	< nt			- 22			






- O (d) Find the equation of the circle with BC as diameter.
- $x \\ y$

	oart marks Unit		no	n-calc	C	alc	çal	c neut	Conte	nt Reference :	
part marks Unit	C	A/B	С	A/B	C	A/B	Main	Additional	2.4		
(a)	4	2.4					4		2.4.2	1.1.9	Source
(b)	1 0.1	1 0.1		6		1		0.1		1999 Paper 2	
(c)	1	0.1	1				1		0.1		Qu. 2
(d)	2	2.4					2		2.4.4		2005

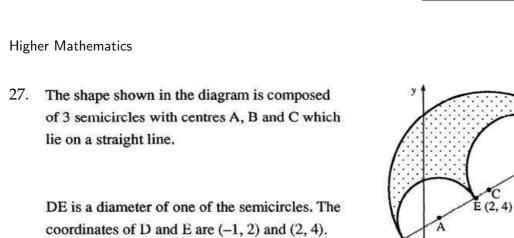
				- 0
	(a)	•1		
		•2	$m_{rad} = \frac{1}{2}$	
		•3	$m_{tgt} = -2$	
		•4	y - (-1) = -2(x - (-1))	
	(b)	•5	B = (0, -3)	
;	(c)	•6	C = (-2, 1)	8
frag replacements	(d)	.7	$r^2 = 5$	
0		•8	$r^{2} = 5$ $(x+1)^{2} + (y+1)^{2} = 5$	3
x				
y				 5



jār 5	1l	 	 -
	iv o		



5


Higher Mathematics

 $x \\ y$ 

•⁵  $(x-5)^2 + (y-13)^2 = 9$ 

[SQA] 2 frag replaceme	cir Th	bakery fir cular "he e equation e of centr	ad" and n of the	"body "body	y″. ∕″is x	$^{2} + y^{2}$	2 10 <i>x</i> –	12y +	- 45 = 0	and the	у 1	
	10000	ead".									(	$\cdot$
	x											<u> </u>
	у										ol	x
	pa	rt marks	Unit	no C	n-calc	C C	alc A/B	ca C	C neut	Conte Main	nt Reference : Additional	2.4
		5	2.4					5		2.4.2	2.4.3	Source 1990 P1 qu.7
C 1	Ē		entre of bo	-125 -12100	,6)							
frag replaceme	nts		adius of bo									
	0	520	adius of he									
	r	• c	entre of he	ad = (5,	,13)							8





(a) Find the equation of the circle with

centre A and diameter DE.

The circle with centre B and diameter EF has equation  $x^2 + y^2 - 16x - 16y + 76 = 0$ .

- (b) (i) Write down the coordinates of B.
  - (ii) Determine the coordinates of F and C.

#### frag replacements

[SQA]

O (c) In the diagram the perimeter of the shape is represented by the thick black line.  $\begin{array}{c} x \\ y \end{array}$  Show that the perimeter is  $5\pi\sqrt{13}$  units.

			Tinit	non-calc		calc		calc neut		Content Reference :	2.4
	part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	
	(a)	3 3	2.4					3		2.4.3	Source
	<i>(b)</i>	3	2.4					3		2.4.2 & 3.1.6	1998 Paper 2
	(c)	3	0.1						3	0.1	Qu. 6
	-						4.5				
	(a)	•1	$A = \left(\frac{1}{2}, 3\right)$								
	1.25533	2	$2^{2} = \frac{9}{4} + 1$		.2						
						13					
	1	•3 (	$\left(x-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2$	$(y-3)^2$	$=\frac{13}{4}$						
			$r x^2 + y^2$								
		6	r x + y	-x=0	5y + 0 = 0	J					
	(b)	• ⁴ I	3 (8,8)								
			F (14,12)								
		- 1	(14,12)								
		• (	$\left(\frac{13}{2},7\right)$								
	(c)	•7	$\frac{1}{2}\pi DF + \frac{1}{2}$	$\pi DE + \frac{1}{2}$	$\frac{1}{2}\pi EF$						
ag replacements	3		$\frac{1}{5}\pi DF = \frac{5}{2}$			CD.	0 10				
0							2π√13				
0		•9	$\frac{5}{5}\pi\sqrt{13} + \frac{1}{2}$	$\pi\sqrt{13}$	$+2\pi\sqrt{13}$						
x		1	8								

#### replacements

 $\begin{array}{c}
\mathbf{O} \\
x \\
y \\
\end{array} \\
\mathbf{hsn.uk.net}
\end{array}$ 

y '

PStrag replacements

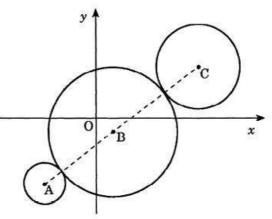
D (-1, 2)

0

Ο

 $_{y}^{x}$ Quest

x


(3)

(3)

(3)

(8)

[SQA] 28. When newspapers were printed by lithograph, the newsprint had to run over three rollers, illustrated in the diagram by three circles. The centres A, B and C of the three circles are collinear.



# frag replacements The equations of the circumferences of the outer circles are

O 
$$(x+12)^2 + (y+15)^2 = 25$$
 and  $(x-24)^2 + (y-12)^2 = 100$ .

x Find the equation of the central circle.

y

			non-calc		calc		c neut	Content Reference :	3.1	
part marks		Unit	C	A/B	C	A/B	С	A/B	Main Additional	3.1
•	8	3.1					8		2.4.1, 2.4.3, 3.1.6	Source 1995 Paper : Qu.8
(-)	• ² 1 • ³ 2 • ⁴ 1 • ⁵ 1	-12, -15) radii are 5 AC = 45 radius = 1! $\overrightarrow{OB} = \frac{1}{9} \left[ 400000000000000000000000000000000000$	and 10 5 AC in $\overrightarrow{OC} + 5$	$\vec{O}$ ratio 4:5 $\vec{OA}$ sta	nted o	r implie	ed			

# frag replacements

replacements

O *x y* **bsn**.uk.net



5

Higher Mathematics

[SQA] 29. Two identical circles touch at the point P (9, 3) as shown in the diagram. One of the circles has equation  $x^2 + y^2 - 10x - 4y + 12 = 0$ .

frag replacements Find the equation of the other circle.

Ox

y

y

	part		17.14	non-calc		calc		calc neut		Content Reference :		24	
		marks	Unit	C	A/B	Ç	A/B	Ç	A/B	Main	Additional	2.4	
	64	5	2.4					5		2.4.2	(3.1.6)	Source 1997 P1 qu.12	
rag replacements O x	• ¹ use P as midpoint of $C_1C_2$												
	1		$C_1 = (5, 2)$										
			$C_2 = (13, 4)$										
		•4	$radius = \sqrt{17}$										
		• ⁵ $(x-13)^2 + (y-4)^2 = 17$											
y		- Co. 190		10	1999 - 1994 1994		*· * A	- 21	· 72		1. A	4	

[END OF PAPER 2]

