Differentiation 2

1. Differentiate $\frac{x^{2}+1}{\sqrt{x}}$, with respect to x,
2. Find $f^{\prime}(x)$ when $f(x)=\frac{x^{3}-6 \sqrt{x}}{x^{2}}$.
3. The diagram below shows the parabola with equation $y=8 x-3 x^{2}$ and the line which is a tangent to the curve at the point $\mathrm{T}(1,5)$.

Find the size of the angle marked θ, to the nearest degree.
4. Show that the function $f(x)=4(1-2 x)^{3}$ is decreasing for all values of x, except $x=\frac{1}{2}$.
5. Show that the curves with equations $y=x^{2}+8 x+3$ and $y=1+4 x-x^{2}$ touch each other at a single point, and find the equation of the common tangent at this point.
6. Tin sheeting is bent and sealed to form a feeding trough in the shape of the prism opposite.
Angle $A B C$ is a right-angle.
The total amount of tin plate used is $6 \frac{1}{2}$ square metres.
$A B=x, B C=2 x$ and $C D=w$.
(a) Show that the surface area, A, in terms of x and w can be written as $A=2 x^{2}+3 x w$.

(b) Hence show that $w=\frac{13}{6 x}-\frac{2 x}{3}$.
(c) If the volume of the trough is given as $V m^{3}$, show that $V(x)=\frac{13 x}{6}-\frac{2 x^{3}}{3}$.
(d) Hence find the values of x and w for maximum volume.

Give your answers correct to 2 decimal place.

