Simplify $\sqrt{48}$

$$
\text { Simplify } \frac{a^{5} \times a^{-4}}{a} \quad \text { Simplify } \frac{3}{2 g}-\frac{4}{g}
$$

Factorise \boldsymbol{x}^{2} - Write $\frac{3}{\sqrt{5}}$ with a rational denominator $11 \boldsymbol{x}+28$ Find the length of the
Find the gradient of the straight minor arc $A B$ line joining $(-2,-5)$ and $(4,5)$.

Write $x^{2}+4 x-1$ in
Factorise $2 x^{2}-50$ the form $(x+a)^{2}+b$

Today's Learning:

To solve linear equations.
egg. 1) $10(\mathrm{~h}-5)=2(3-h)$

$$
\begin{gathered}
10 h-50=6-2 h \\
+2 h
\end{gathered}
$$

$$
12 h-50=6
$$

$$
2(b+4)=b-7
$$

Solve this equation for $b: \quad 2(b+4)=b-7$

$$
12 h=56
$$

$$
\begin{gathered}
2 b+8=(b)-7 \\
-b=-b \\
b+8=-7 \\
-8=-8 \\
b=-15
\end{gathered}
$$

$$
\times 10
$$

$$
m+30=20-50 m
$$

$$
+50 \mathrm{~m}+50 \mathrm{~m}
$$

$$
51 m+30=20
$$

$$
-30 \quad-30
$$

$$
51 \mathrm{~m}=-10
$$

$$
m=\frac{-10}{51}
$$

$$
\begin{aligned}
& h=56 \\
& h_{1}=\frac{56}{12}=\frac{28}{6}=\frac{14}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{5 x-2}{3} \times \frac{4 x+1}{2} \\
& {[2(5 x-2)=3(4 x+1)]} \\
& 5 x-2=\frac{12 x+3}{2} \\
& 10 x-4=12 x+3
\end{aligned}
$$

Starter $3 i^{2} 6$

1) Simplify: $\frac{x^{2}-5 x+6}{x^{2}-9}=\frac{(x-5)(x-2)}{(x+3)(x-3)}=\frac{x-2}{x+3}$
2) Solve for $\mathrm{T}: \quad 5 \mathrm{~T}-2=4(\mathrm{~T}-2)$
$5 T-2=4 T-8$
$T-2=-8$
$T=-6$
3) Simplify $\sqrt{108}=\sqrt{2 \times 54}$

$$
=\sqrt{4 \times 27}
$$

Today's Learning:

To solve algebraic inequations.

$$
=2 \sqrt{27}
$$

$$
=2 \sqrt{9 \times 3}
$$

$$
=2 \times 3 \times \sqrt{3}
$$

$$
=6 \sqrt{3}
$$

4) Simplify $5 c^{2} \times \frac{1}{c}$

$$
\begin{array}{r}
=5 c^{2} \times 1 c^{-1} \\
=5 c^{1} \\
=5 c
\end{array}
$$

means greater than or equal to

Think of 4 numbers that fit each inequality:
a) $4 \leq a<9 \quad 4,5,6,7,8$
b) $b>7 \quad 8,9,10,11$
c) $-1 \geq c \geq-10-1,-2,-3,-4$
d) $d<5 \quad 4,3,2,1$

Solving Inequations

< means less than
$>$ means greater than
\leq means less than or equal to
means greater than or equal to
$\underset{\sim}{*}$ To solve, we treat the inequality like an equals sign, except when we multiply or divide by a negative number.

Challenge

$$
\begin{array}{lcc}
\text { Solve for } \mathrm{T}: & -4 T+1<-2 T \\
1 \approx<2 T & +2 T+2 T & -2 T 0 \\
\frac{1}{2}<T & -2 T+1<0 & -1
\end{array}
$$

Solving Inequations

< means less than
$>$ means greater than
\leq means less than or equal to
means greater than or equal to

To solve, we treat the inequality like an equals sign, except when we multiply or divide by a negative number.
e.g. 1) $3 a+7>a-3$

2) $-2 x+12 \quad 8$

$$
\begin{gathered}
-12 \quad-12 \\
-2 \times \square-4 \\
\div-2 \div-2 \\
x \backsim 2
\end{gathered}
$$

Solve these inequations:
a) $3 w-3>2 w+7$
b) $3-2 x<16+x-4$
$\begin{array}{cc}3-2 x & <12+x \\ +2 x\end{array}$
$3<12+3 x$
$-3 x<9$
$\begin{array}{cc}3 x>-9 & -92<3 x \\ x>-3 & -3<x\end{array}$
$3 x$

