Functions 1

1. Two functions f and g are defined on the set of real numbers as follows :

$$
f(x)=2 x-3 \quad, \quad g(x)=\frac{x+9}{4}
$$

(a) Evaluate $f(g(-3))$.
(b) Find an expression , in its simplest form, for $g(f(x))$.
(c) Hence verify that $\quad f^{-1}(x)=g(f(x))$
2. The functions $f(x)=x^{2}+3$ and $h(x)=7+3 x$ are defined on the set of real numbers.
(a) Evaluate $h(f(2))$.
(b) Find an expression, in its simplest form, for $f(h(x))$.
(c) For what values of x would the functions f and h produce the same image?
3. A function in terms of x is given as

$$
f(x)=3 x(x-1)+(3 a+3), \text { where } a \text { is a constant. }
$$

Given that $k=a+1$ show that $f(k)=3 k^{2}$.
4. Two functions are defined as $f(x)=p x^{2}-1$ and $h(x)=\frac{5 x+q}{2}$, where p and q are constants.
(a) Given that $f(2)=h(2)=7$, find the values of p and q.
(b) Find $h(f(x))$.
(c) Find the value of the constant k when $2[h(f(x))]-4=k[f(x)]$.
5. The graph of $y=f(x)$ is shown opposite.
(a) Draw a sketch of $y=-f(x)$.
(b) Draw a sketch of $y=f(-x)$.
(c) Draw a sketch of $y=f(x+2)$.
(d) Draw a sketch of $y=4-f(x)$.

