Functions 2

1. The functions $f(x)=x^{2}+x$ and $g(x)=3 x-1$ are defined on the set of positive real numbers $\left(\mathrm{R}^{+}\right)$.
(a) Evaluate
i) $\quad g(f(2)$
ii) $\quad f(g(-1))$.
(b) Find a formula for i) $\quad f(g(x))$
ii) $\quad g(f(a))$
iii) $\quad f(f(k))$
(c) Find a formula for the inverse function $g^{-1}(x)$.
2. On a suitable set of real numbers, functions f and h are defined by :

$$
f(x)=\frac{2}{3 x-3} \quad \text { and } \quad h(x)=\frac{1}{x^{2}}+1
$$

(a) Find $f(h(x))$ in its simplest form.
(b) Find a formula for the function $f^{-1}(x)$ and state a suitable domain for this inverse function.
3. Two functions f and h are defined on the set of real numbers as follows :

$$
f(x)=2 x+1 \quad, \quad h(x)=\frac{1}{x-1}, x \neq 1 .
$$

(a) Given that $g(x)=f(h(x))$ show that $g(x)$ can be written as $g(x)=\frac{x+1}{x-1}$.
(b) Hence verify that $g^{-1}(x)=g(x)$.
4. The graph of $y=f(x)$ is shown opposite and, shown by the dotted line the graph of a related function. Write down the equation of the related function.

