1) Write down the coordinates of the centre of each circle and state its radius.
a) $x^{2}+y^{2}-4 x+6 y+11=0$
b) $x^{2}+y^{2}+10 x-7 y-3=0$
c) $2 x^{2}+2 y^{2}-6 x-9 y-8=0$

2) The point $P(2,3)$ lies on the circle $(x+1)^{2}+(y-1)^{2}=13$.

Find the equation of the tangent at P.
3) $(x-2)$ is a factor of $3 x^{3}-\mathrm{k} x^{2}+4$.
a) Find the value of k.
b) Find the other factors of $3 x^{3}-k x^{2}+4$ for this value of k.

4) A triangle $L M N$ has vertices $L(-1,-2), M(5,2)$ and $N(1,8)$.

Find the equation of the altitude through L.

5) A circle has centre $(-2,3)$ and passes through $P(1,6)$.
a) Find the equation of this circle.
b) The line $P Q$ is a diameter of the circle. Find the equation of the tangent to the circle at Q.
6) a) Express $2 x^{2}+4 x-3$ in the form a $(x+b)^{2}+c$.
b) Write down the coordinates of the turning point on the parabola with equation
 $y=2 x^{2}+4 x-3$.
7) Triangles $A C D$ and $B C D$ are right-angled at D with angles p and q and lengths as shown in the diagram.
a) Show that the exact value of $\sin (p+q)$ is $\frac{84}{85}$.
b) Calculate the exact values of:
i) $\cos (p+q)$
ii) $\tan (p+q)$

8) $f(x)=x^{3}-x^{2}-5 x-3$
a) i) Show that $(x+1)$ is a factor of $f(x)$.
ii) Hence or otherwise factorise $f(x)$ fully.

b) One of the turning points of the graph of $y=f(x)$ lies on the x-axis. Write down the coordinates of this turning point.
9) Find the coordinates of the point(s) where the straight line $y=x+1$ meets the parabola $y=x^{2}+3 x+2$.

