Higher Homework 10

1) Write down the coordinates of the centre of each circle and state its radius.

b) $x^2 + y^2 + 10x - 7y - 3 = 0$

- a) $x^2 + y^2 4x + 6y + 11 = 0$
- c) $2x^2 + 2y^2 6x 9y 8 = 0$
- 2) The point P (2,3) lies on the circle $(x + 1)^2 + (y 1)^2 = 13$. Find the equation of the tangent at P.
- 3) (x 2) is a factor of $3x^3 kx^2 + 4$.
 - a) Find the value of k.
 - b) Find the other factors of $3x^3$ kx^2 + 4 for this value of k.
- 4) A triangle LMN has vertices L (-1,-2), M (5,2) and N (1,8). Find the equation of the altitude through L.
- 5) A circle has centre (-2,3) amd passes through P (1,6).
 - a) Find the equation of this circle.
 - b) The line PQ is a diameter of the circle. Find the equation of the tangent to the circle at Q.
- 6) a) Express $2x^2 + 4x 3$ in the form a $(x + b)^2 + c$.
 - b) Write down the coordinates of the turning point on the parabola with equation $y = 2x^2 + 4x 3$.
- 7) Triangles ACD and BCD are right-angled at D with angles p and q and lengths as shown in the diagram.
 - a) Show that the exact value of sin (p + q) is $\frac{84}{85}$.
 - b) Calculate the exact values of :
 - i) cos (p + q) ii) tan (p + q)

8) $f(x) = x^3 - x^2 - 5x - 3$

- a) i) Show that (x + 1) is a factor of f(x).
 - ii) Hence or otherwise factorise f(x) fully.
- b) One of the turning points of the graph of y = f(x) lies on the x-axis. Write down the coordinates of this turning point.
- 9) Find the coordinates of the point(s) where the straight line y = x + 1 meets the parabola $y = x^2 + 3x + 2$.

