1) In triangle $A B C$, show that the exact value of $\sin (a+b)$ is $\frac{2}{\sqrt{5}}$

2) A function $f$ is defined by the formula $f(x)=2 x^{3}-7 x^{2}+9$ where $x$ is a real number.
a) Show that $(x-3)$ is a factor of $f(x)$ and hence factorise $f(x)$ fully.
b) Find the coordinates of the points where the curve with equation $y=f(x)$ crosses the
 $x$ - and $y$-axes.
c) Find the greatest and least values of $f(x)$ on the interval $-2 \leq x \leq 2$.
3) Show that the equation $(1-2 k) x^{2}-5 k x-2 k=0$ has real roots for all integer values of $k$.

4) Solve,
a) $3 \cos 2 x-\cos x=-2$
for $0 \leq x \leq 360^{\circ}$.
b) $\sin 2 x-2 \cos x=0$
for $0 \leq x \leq 360^{\circ}$.

5) The circles with equations $(x-3)^{2}+(y-4)^{2}=25$ and $x^{2}+y^{2}-\mathrm{k} x-8 y-2 \mathrm{k}=0$ have the same centre.
Determine the radius of the larger circle.
6) Find the equation of the tangent to the circle $x^{2}+y^{2}+6 x-4 y-24=0$ at the point $(-9,3)$.
7) Find the stationary points on the curve $y=x^{3}-6 x^{2}+9 x-4$ and determine the nature of each of them.
8) The diagram shows a sketch of the graph of $y=x^{3}-4 x^{2}+x+6$.
a) Show that the graph cuts the $x$-axis at $(3,0)$.
b) Hence or otherwise find the coordinates of $A$.
c) Find the shaded area.

9) Given that, $f(x)=\sqrt{x}+\frac{2}{x^{2}}$, find $f^{\prime}(4)$.

