1) Solve,
a) $\quad \cos 2 x-2 \sin ^{2} x=0$
for $0 \leq x \leq 360^{\circ}$.
b) $\quad \cos 2 x-2 \sin ^{2} x=0$
for $0 \leq x \leq 2 \pi$.

2) An open cuboid measures x units by $2 x$ units by h units and has an inner surface area of 12 units 2.
a) Show that the volume, V units 3, of the cuboid is given by

$$
V(x)=\frac{2}{3} x\left(6-x^{2}\right)
$$

b) Find the exact value of x for which this volume is a maximum.
3) a) Write $x^{2}-10 x+27$ in the form $(x-b)^{2}+c$.
b) Hence show that the function $g(x)=\frac{1}{3} x^{3}-5 x^{2}+27 x-2$ is always increasing.

4) With reference to a suitable set of coordinate axes, A, B and C are the points $(-8,10,20)$, $(-2,1,8)$ and $(0,-2,4)$ respectively.

Show that A, B and C are collinear and find the ratio $A B: B C$.
5) P, Q and R have coordinates $(1,3,-1)(2,0,1)$ and $(-3,1,2)$ respectively.
a) Express the vectors $\overrightarrow{Q P}$ and $\overrightarrow{Q R}$ in component form.
b) Hence or otherwise find the size of the angle PQR.
6) Solve,

a) $\quad \sin 2 x=6 \cos x$	for $0 \leq x \leq 360^{\circ}$.
b)	$\sin x-\sin 2 x=0$

7) A and B are the points ($-1,-3,2$) and ($2,-1,1$) respectively. B and C are the points of trisection of $A D$, that is $A B=B C=C D$.

Find the coordinates of D.
8) Given that $(x-2)$ and $(x-3)$ are factors of $f(x)$ where $f(x)=3 x^{3}+2 x^{2}+c x+d$, find the values of c and d.
9) Find the positive value of z for which

$$
\int_{2}^{z}(6 x-5) d x=10
$$

