1) The curves with equations $y=x^{2}$ and $y=2 x^{2}-9$ intersect at K and L as shown.

Calculate the area enclosed between the curves.

2) The diagram shows a wire framework in the shape of a cuboid with the edges parallel to the axes.
Relative to these axes A, B, C and H have coordinates $(1,3,4)$, $(2,3,4),(2,7,4)$ and $(1,7,9)$ respectively.
a) State the lengths of $A B, A D$ and $A E$.
b) Write down the components of $\overrightarrow{H B}$ and $\overrightarrow{H C}$ and hence or
 otherwise calculate the size of the angle BHC .
3) PQRS is a parallelogram. P is the point $(2,0)$, S is $(4,6)$ and Q lies on the x-axis as shown. The diagonal QS is perpendicular to the side PS.
a) Show that the equation of $Q S$ is $x+3 y=22$.
b) Hence, find the coordinates of Q and R.

4) Find $\int_{0}^{1} \frac{d x}{(3 x+1)^{\frac{1}{2}}}$

5) A function f is defined by $f(x)=(2 x+1)^{5}$.

Find the coordinates of the stationary point on the graph with equation $y=f(x)$ and determine its nature.

6) Find the value of

$$
\int_{0}^{2} \sin (4 x+1) d x
$$

7) The point $\mathrm{P}(x, y)$ lies on the curve $y=6 x^{2}-x^{3}$.
a) Find the value of x for which the gradient of the tangent is 12 .

b) Hence, find the equation of the tangent at P.
8) P, Q and R have coordinates $(1,3,-1)(2,0,1)$ and $(-3,1,2)$ respectively.
a) Express the vectors $\overrightarrow{Q P}$ and $\overrightarrow{Q R}$ in component form.
b) Hence or otherwise find the size of the angle PQR.
