1) Find the equation of the line that is perpendicular to the line $y=\frac{1}{3} x+5$ and passes through the point $(-4,7)$.
2) Find the equation of the line that is perpendicular to the line $y=17$ and passes through the point $(3,8)$.

3) Two functions f and g are defined on the set of real numbers by $f(x)=x-1$ and $g(x)=x^{2}$.
a) Find formulae for
i) $f(g(x))$
ii) $g(f(x))$
b) The function $h(x)$ is defined as $f(g(x))+g(f(x))$.

Show that $h(x)=2 x^{2}-2 x$ and sketch the graph of this function.
4) The function f, defined on a suitable domain, is given by

$$
f(x)=\frac{3}{x+1}
$$

a) Find an expression for $h(x)=f(f(x))$, giving your answer as a fraction in its simplest form.
b) Describe any restriction on the domain of h.
5) The vertices of a triangle are $A(1,4), B(-1,-6)$ and $C(7,-2)$.
a) Find the equation of the altitude from point A.
b) Find the equation of the perpendicular bisector of the line $A C$.

c) Find the point of intersection of these two lines.
6) Find the equation of the line $S T$, where T is the point
$(-2,0)$ and angle STO is 60°.

7) The functions f and g are defined on a suitable domain such that

$$
f(x)=3 x-4 \quad \text { and } \quad g(x)=x^{3}+7
$$

a) Find expressions for the inverse functions $f^{-1}(x)$ and $g^{-1}(x)$.
b) State the domain and range of the function $g(x)$.
8) The point A has coordinates $(7,4)$. The straight lines with equations $x+3 y+1=0$ and $2 x+5 y=0$ intersect at B.
a) Find the gradient of $A B$.
b) Hence show that $A B$ is perpendicular to only one of these two lines.

