1) The diagram shows the graph of the function $y=f(x)$.

Copy the diagram and on it sketch the graphs of
a) $y=f(x-4)$.
b) $y=2+f(x-4)$.

2) A function f is defined by $f(x)=4 \sqrt{x}+1$.
a) Find the inverse function $f^{-1}(x)$.

b) Suggest a suitable domain and range for the function $f(x)$.
c) Suggest a suitable domain and range for the inverse function $f^{-1}(x)$.
3) A function f is given by $f(x)=\frac{3}{2 x^{4}}$. Find an expression for $f^{\prime}(x)$.
4) Given that $f(x)=\sqrt{x}+\frac{2}{x^{2}}$, find $f^{\prime}(4)$.

5) The diagram shows the graph of $y=\frac{24}{\sqrt{x}} \quad, x>0$. Find the equation of the tangent at P, where $x=4$.

6) Express these in radians.
a) 160°
b) 105°
c) 4°
d) 189°

7) Express each of the following in the form $a(x+b)^{2}+c$
a) $3 x^{2}-6 x-5$
b) $5 x^{2}+30 x-2$

8) a) Calculate the limit as $n \longrightarrow \infty$ of the sequence defined by $u_{n+1}=0.9 u_{n}+10$, where $u_{0}=1$.
b) Determine the least value of n for which u_{n} is greater than half of this limit and the corresponding value of u_{n}.

