1) Solve,
a) $x^{3}-3 x^{2}-10 x+24=0$
b) $x^{3}-7 x+6=0$
2) Find the value of k for which these equations have real roots,
a) $\mathrm{k} x^{2}-12 x+9=0$
b) $x^{2}+(\mathrm{k}+1) x=-9$

3) $f(x)=6 x^{3}-5 x^{2}-17 x+6$.
a) Show that $(x-2)$ is a factor of $f(x)$.
b) Express $f(x)$ in fully factorised form.
4) Find the value of k if $(x-4)$ is a factor of $p(x)=2 x^{3}-5 x^{2}+k x-20$.
5) Find,
a) $\int\left(9 x^{4}+7 x^{2}-2\right) d x$
b) $\int\left(6 x^{3}-7+\frac{5}{2 x^{3}}\right) d x$
c) $\int\left(6 x^{2}+\frac{2}{x}\right)^{2} d x$
d) $\int\left(\frac{7-2 x}{\sqrt{x}}\right) d x$
6) Evaluate,

$$
\int_{12}^{20} x(x+7) d x
$$

7) Calculate the shaded area enclosed between the parabolas with equations $y=1+10 x-2 x^{2}$ and $y=1+5 x-x^{2}$.

8) The curve $y=f(x)$ is such that $\frac{d y}{d x}=4 x-6 x^{2}$. The curve passes through $(-1,9)$. Express y in terms of x.
9) Two functions f and g are defined by $f(x)=\frac{1}{x-2}$ and $g(x)=7 x+5$.
a) Find an expression for $h(x)=f(g(x))$.
b) Write down any restriction of the domain of h.
