Higher Homework 8

Section 1: L.R.R.

1. For each of the L.R.R.'s below, state, with justification, whether there is a limit. When the limit exists, determine it algebraically; when there is no limit, find the least value of n such that u_n exceeds 100.

 $u_{n+1} = 0.8u_n + 10$ $(u_0 = 10)$ (b) $u_{n+1} = 2u_n - 5$ $(u_0 = 6)$ $u_{n+1} = -0.9u_n + 3.8$ $(u_0 = 6)$ (d) $u_{n+1} = 1.5u_n + 10$ $(u_0 = 1)$ (a)

(c)

- A microbiologist has noticed that 20% of her cell cultures become infected and die each day. She can prepare 80 new cultures at the start of each day. If she starts day 1 with 80 cultures,
 - (a) How many cultures will there be at the start of days 2, 3, 4 and 5? (Just after the 80 new cultures are added.)
 - (b) Find a formula that models this situation.

(c) What is the 'long term' situation?

- (a) At 12 noon a patient is given a pill containing 50 units of antibiotic. By 1 p.m. the number of units in his body has dropped by 12%. By 2 p.m. a further 12% of the units remaining in his body at 1 p.m. is lost. If this fall off rate is maintained, find the number of units of antibiotic remaining at 6 p.m.
 - (b) A doctor considers prescribing a course of treatment which involves the patient taking one of these pills every 6 hours over a long period of time. More than 100 units of this antibiotic in the body is considered dangerous. Should the doctor prescribe this treatment? Give reasons.

Section 2: Straight Lines

1. Sketch the graph of each of these straight lines: (a)

y = 2x - 3

2x + 3y = 6(ii)

Calculate the size of the angle each line, above, makes with the positive direction of the x-(b) axis.

(b)

3.

The straight line ODC has equation $y = \frac{1}{2}x$. A is the point (3,4). ABCD is a square.

- (a) Find the equation of the straight line AD.
- (b) Find the coordinates of D.
- (c) Find the area of square ABCD.

Section 3: Differential Calculus

1. $y = x^3 + x^2 - 16x - 16$.

Find the coordinates of the stationary points and determine their nature. Justify your answer.

- 2. Find the equation of the tangent to the curve $y = 2x^3 2$ at the point where x = -1.
- 3. For which values of x is the function $f(x) = \frac{1}{3}x^3 2x^2 5x$ decreasing?

4. $f(x) = (x-1)^2(x+2) \ (x \in R)$.

- (a) Find the coordinates of the points where the curve with equation y = f(x) meets the coordinate axes.
- (b) Find the stationary points and determine their nature.
- (c) Sketch the curve.