1. Find: (a) $\int\left(9 x^{2}+6 x\right) d x$
(b) $\int(3 x-1)^{2} d x$
(c) $\int\left(3 x^{2}+\frac{2}{x^{3}}\right) d x$
2. Evaluate each of the following definite integrals:
(a) $\int_{-1}^{2}(2 x+4) d x$
(b) $\int_{4}^{9}(\sqrt{x}) d x$
3. Find the area in the first quadrant bounded by the curve $y=4 x-x^{3}$ and the $x$-axis .

4. (a) Find $\int_{-1}^{2}\left(x^{2}-1\right) d x$
(b) Find the area between the curve given by $f(x)=x^{2}-1$ and the $x$-axis from $x=-1$ to $x=2$
(c) Explain, with the aid of a sketch, why these do not give the same answer.
5. A curve has as its derivative $\frac{d y}{d x}=2-12 x$.

Given that the point $(1,3)$ lies on this curve, express $y$ in terms of $x$.
6. The cross-sectional area of a ship's hydro-foil is shown in the diagram opposite with rectangular axes having been added. The top surface has as its equation $y=5+4 x-x^{2}$ and the lower surface $y=(x-1)^{2}+4$.
(a) Establish the coordinates of $A$ and $B$, the points of intersection of the two curves.
(b) Hence calculate the cross-sectional area of
 the hydro-foil in square units.

