Logs/Exp Past Papers Unit 3 Outcome 3

Multiple Choice Questions

Each correct answer in this section is worth two marks.

- 1. Solve $\log_h x \log_h 7 = \log_h 3$ for x > 0.
 - A. *x* = 21
 - B. x = 10
 - C. $x = \frac{7}{3}$
 - D. $x = \frac{3}{7}$

[END OF MULTIPLE CHOICE QUESTIONS]

Written Questions

[SQA] 2. Evaluate $\log_5 2 + \log_5 50 - \log_5 4$.

Part	Marks	Level	Calc.	Content	Answer	U3 OC3
	2	С	NC	A28	2	2000 P1 Q9
	1	A/B	NC	A28		
• ¹ • ² • ³	pd: use pd: use pd: use	$\log_a x + \log_a x - \log_a a =$	$-\log_a y =$ $-\log_a y =$ = 1	$= \log_a xy$ $= \log_a \frac{x}{y}$	• ¹ $\log_5 100 - \log_5 4$ • ² $\log_5 25$ • ³ 2	

replacements

[SQA] 3. Given $x = \log_5 3 + \log_5 4$, find algebraically the value of x.

			TTuth	no	n-calc	C	alc	cal	c neut	Conte	nt Reference :	3.3
	part	marks	Unit	C	A/B	С	A/B	C	A/B	Main	Additional	
			2.2	4						222	221 224	Source
		4	3.3	1	3					3.3.3	3.3.1, 3.3.4	1998 P1 qu.19
		1	1									
	1	6.5	$x = \log_5 12$									
rag replacements		•2	$5^{x} = 12$									
0		•3	$\log 5^x = \log 5^x$	g12								
x		•4	log ₁₀ 12	or	log, 12	or	log12	= 1.54	4			
Y		11.0	610 -				1.80	255				

[SQA] 4. Find x if $4 \log_x 6 - 2 \log_x 4 = 1$.

Part	Marks	Level	Calc.	Content	Answer	U3 OC3
	3	С	NC	A32, A28, A31	x = 81	2001 P1 Q8
•1 •2 •3	pd: use pd: use ic: inte simplify	log-to-i log-to-c erpret ba	ndex ru livision Ise for lo	le rule $\log_x a = 1$ and	• $\log_x 6^4 - \log_x 4^2$ • $\log_x \frac{6^4}{4^2}$ • $\log_x \frac{6^4}{4^2}$	x = 81

[SQA] 5. Find the *x*-coordinate of the point where the graph of the curve with equation $y = \log_3(x - 2) + 1$ intersects the *x*-axis.

Marks Answer U3 OC3 Part Level Calc. Content 2 С CN A31 2002 P2 Q7 1 A/B CN A32 $x = 2\frac{1}{3}$ ¹ ss: know to isolate log term
² pd: express log equation as exp. equ. •¹ $\log_3(x-2) = -1$ •² $x-2 = 3^{-1}$ •³ $x = 2\frac{1}{3}$ •³ pd: process

replacements

4

3

Higher Mathematics

[SQA] 6. Part of the graph of $y = 5 \log_{10}(2x + 10)$ is shown in the diagram. This graph crosses the x-axis at the point A and the straight line y = 8 at the point P

frag replacements $\lim y = 8$ at the point B.

O Find algebraically the x-coordinates of A x and B. y

and mander	Timit	no	n-calc	Ci	alc	cal	c neut	Content Reference :	33
part marks	Unit	С	A/B	C	A/B	C	A/B	Main Additional	0.0
. 4	3.3				4			3.3.4	Source 1997 P1 qu.17
•1	$x_A = -4 \cdot 5$								
•2	$5\log_{10}(2x)$	+10)=	= 8						
•3	2x + 10 = 16	0 ⁸							
•4	$x = 14 \cdot 9$								
	part marks . 4 . 1 .2 .3 .4	part marks Unit . 4 3.3 •1 $x_A = -4 \cdot 5$ •2 •2 $5 \log_{10}(2x)$ •3 •3 $2x + 10 = 14$ •4 •4 $x = 14 \cdot 9$ •4	part marks Unit no . 4 3.3 •1 $x_A = -4 \cdot 5$ •2 $5\log_{10}(2x+10) =$ •3 $2x + 10 = 10^{\frac{6}{5}}$ •4 $x = 14 \cdot 9$	part marks Unit non-calc . 4 3.3	part marks Unit non-calc ca . 4 3.3 C A/B C . 4 2	part marks Unit non-calc calc C A/B C A/B • 4 3.3 4 • 1 $x_A = -4 \cdot 5$ • 2 $5\log_{10}(2x+10) = 8$ • 3 $2x+10 = 10^{\frac{8}{5}}$ • 4 $x = 14 \cdot 9$	part marks Unit non-calc calc cal . 4 3.3 A A B C A/B C A/B C . 4 3.3 A A A A A A A A A A A A A A A A A A	part marks Unit non-calc calc calc neut C A/B C A/B C A/B C A/B • 4 3.3 4 4 • • • • • • • • • • • • • • • • •	part marks Unit Inon-calc calc calc neut Content Reference : Main Additional . 4 3.3 . 4 3.3 . 4 . C A/B C A/B C A/B . Main Additional . 4 3.3 . 4 . 3.3 . 4 . 3.3.4

[SQA] 7. The diagram shows a sketch of the graph of y = f(x) where $f(x) = a \log_2(x-b)$. Find the values of *a* and *b*.

3

frag replacements

Oxy

non-calc calc calc neut Content Reference : 3.3 part marks Unit Additional A/B A/B A/BMain Source 3 3.3.4 3.3 3 1995 P1 qu.19 •1 *b* = 2 frag replacements •2 $3 = a \log_2 2$ stated or implied $(4-b)^a=8$ Ο or .3 a = 3 x y

O *x y* **bhsn**.uk.net

y

Higher Mathematics

[SQA] 10. Medical researchers studying the growth of a strain of bacteria observe that the number of

trag replacements bacteria, present after t hours, is given by the formula $N(t) = 40e^{1.5t}$.

- O_{γ} (a) State the number of bacteria present at the start of the experiment.
- x (b) How many minutes will the bacteria take to double in number?

	Geographics		T 1	no	n-calc	C	alc	cal	c neut	Content Reference :	22
	part	marks	Unit	С	A/B	С	A/B	С	A/B	Main Additional	5.5
	(a)	1	3.3	Ċ.		1				3.3.4	Source
	(b)	4	3.3			1	3			3.3.7	1989 P1 qu.20
ag replacements O		$*^{2}$ 4 $*^{3}$ 1 $*^{4}$ t	$40e^{1.5t} = 80$ $5t = \ln 2$ = 0.46								

[SQA] 11. A medical technician obtains this print-out of a wave form generated by an oscilloscope. The technician knows that the equation of the first branch of the graph (for $0 \le x \le 3$) should be of the form $y = ae^{kx}$.

frag replacements (a) Find the values of a and k.

O x y (b) Find the equation of the second branch of the curve (i.e. for $3 \le x \le 6$).

$\frac{\text{frag replacements}}{O$		Γ.,	the second second second	17	no	n-calc	c	alc	ca	ic neut	Content Reference :	3.3
$\frac{(a) 4 3.3}{(b) 1 1.2} \qquad 1 3 3.3.5 \qquad \text{Source} \\ \hline 1 1 1 1 1 1 1 1 1 1$		part	marks	Unit	C	A/B	C	A/B	C	A/B	Main Additional	0.0
$\frac{\text{frag replacements}}{O} \xrightarrow{\text{(b)} 1 \\ 1.2 \\ 1 \\ 1.2 \\ 1 \\ 1.2.7 \\ 1993 \text{ P1 qu.15}}$		(a)	4	3.3			1	3	0.072		3.3.5	Source
$\frac{\text{frag replacements}}{O} \qquad \qquad$		(b)	1	1.2				1			1.2.7	1993 P1 qu.15
	frag replacement	$\frac{ts}{c}$	• ¹ (0, • ² 20 • ³ e.g • ⁴ k =	$5) \Rightarrow a = 5$ $= 5e^{3k}$ $\therefore \ln 20 = \ln 20 = 1$.5 + 3k1 ccept	n <i>e</i> { ln4)						

replacements

0 x ♥**hsn**.uk.net Y

1 4

4

1

 y^{x} Quest

PStrag replacements

Ο

4

1

Ο

 $_{y}^{x}$ Quest

Higher Mathematics

[SQA] 14. Two sound intensities P_1 and P_2 are said to differ by *n* decibels when $n = 10 \log_{10} \left(\frac{P_2}{P_1}\right)$

frag replacements

where P_1 and P_2 are measured in phons and $P_2 > P_1$.

- O Rustling leaves have a typical sound intensity of 30 phons.
- x If the sound intensity of a fire alarm siren is 6.5 decibels gretaer than rustling leaves, what is
- γ the sound intensity of the fire alrm system, measured in phons?

Additional Source 1989 P1 qu.21	• 1 for marks On $\frac{C}{A/B}$ $\frac{A/B}{C}$ $\frac{A/B}{A/B}$ $\frac{C}{A/B}$ $\frac{A/B}{3.3.4}$ $\frac{C}{1989}$ P1 qu.21 • $6 \cdot 5 = 10 \log_{10} \left(\frac{P}{30}\right)$	Georges		Tinte	no	n-calc	C	alc	cal	c neut	Content Reference :	3.3
Source 1989 P1 qu.23	3 3.3 1 2 3.3.4 Source • 1 $6 \cdot 5 = 10 \log_{10} \left(\frac{P}{30} \right)$ • $1 + 2 + 3 = 10 \log_{10} \left(\frac{P}{30} \right)$ • $1 + 2 + 3 = 10 \log_{10} \left(\frac{P}{30} \right)$	art	marks	Unit	C	A/B	С	A/B	C	A/B	Main Additional	0.0
1989 P1 qu.2	• $1 6.5 = 10 \log_{10} \left(\frac{P}{30}\right)$ 1 1 2 5.5.4 1989 P1 qu.2		2	22			34	2			334	Source
••••••••••••••••••••••••••••••••••••••	$\bullet^1 6 \cdot 5 = 10 \log_{10} \left(\frac{P}{30}\right)$		3	5.5	1		1	1 4			5.0.4	1989 P1 qu.3
	$(332 + 1010g_{10})$	-			0.75			1	_			
			• ¹ 6 • ² <i>P</i>	5 = 1010 $P = 30 \times 10$	$g_{10}\left(\frac{P}{30}\right)_{0.65}$	$\left(\frac{2}{2}\right)$						

frag replacements

^[SQA] 15. Before a forest fire was brought under control, the spread of the fire was described by a law of the form $A = A_0 e^{kt}$ where A_0 is the area covered by the fire when it was first detected and A is the area covered by the fire t hours later.

If it takes one and a half hours for the area of the forest fire to double, find the value of the constant *k*.

Part	Marks	Level	Calc.	Content	Answer	U3 OC3
	3	A/B	CR	A30	k = 0.46	2001 P2 Q9
• ¹ • ² • ³	ic: forr ss: exj equatior pd: solv	n expon press ex 1 7e log ec	ential e xp. e juation	quation qu. as log	• ¹ $2A_0 = A_0 e^{k \times 1.5}$ • ² e.g. $1.5k = \ln 2$ • ³ $k = 0.46$	

3

Ο

 y^{x} Quest

Higher Mathematics

16. A mug of tea cools according to the law $T_t = T_0 e^{-kt}$ where T_0 is the initial temperature and T_c is [SQA] frag replacements the temperature after t minutes. All temperatures are in °C.

 $O^{(a)}$ A particular mug of tea cooled from boiling point (100°C) to 75°C in a quarter of an hour. Calculate the value of k.

 $\frac{x}{y}$ (b) By how many degrees will the temperature of this tea fall in the next quarter of an hour?

		manka	Init	no	n-calc	Ca	lc	cal	c neut	Content Reference :	33
	part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	
	(a)	3	3.3	15 V	a - 111183	1	2			3.3.7	Source
	(b)	2	3.3			5	2			3.3.7	1996 P1 qu.19
g replacements O x			$75 = 100e^{-7}$ n 0 · 75 = - : = 0.0192	k×15 •15k			⁴ T ₁₅ ⁵ fal	= 75 l = 18	e ^{-0.0192×}	¹⁵ or $T_{30} = 100e^{-0.0192 \times 30}$	

replacements

			PStrag replacements
			0
Higher	r Ma	thematics	x y
17. ((a)	A tractor tyre is inflated to a pressure of 50 units.	

Twenty-four hours later the pressure has dropped to 10 units.

If the pressure, P_t units, after t hours is given by the formula $P_t = P_0 e^{-kt}$, find the value of k, to three decimal places.

(b) The tyre manufacturer advises that serious damage to the tyre will result if it is used when the pressure drops below 30 units.

frag replacements

[SQA]

If the farmer inflates the tyre to 50 units and drives the tractor for four hours, can the tractor be driven further without inflating the tyre and without risking serious damage to the tyre?

х y

Ο

	10		17.14	no	n-calc	Ca	alc	ca	lc neut	Content Reference :	33
	part	marks	Unit	C	A/B	C	A/B	C	A/B	Main Additional	0.0
	(a)	5	3.3			2	3			3.3.4	Source 1991 Paper 2
	(0)	4	3.3				3		1	3.3.4	Qu. 7
	10	4	24	L							
	(a)	• 10	$0 = 50e^{-24}$								1
		• ² 0	$2 = e^{-24k}$								
		•3 -	$24k = \ln 0$	2							6
		.4		-							
		• -	24k = -1.6	09							9
		•' k	= 0.067								
		4									
	(0)	•° k	nowing to) find	P ₄						
		• ⁷ P	$_{4} = 50e^{-0.2}$)67×4							
		•8 3	8								
frag replacements		.9 .	0. 00			e					
		• 3	8 > 30 so	can be	ariven	furthe	r				
0											
x											
1/											

replacements

(5)

(4)

Ο

 $_{y}^{x}$ Quest

PStrag replacements Ο y^{x} Quest

18. The amount A grams of a radioactive substance at time t minutes is given by $A = A_0 e^{-kt}$ where A_0 is [SQA] the initial amount of the substance and k is a constant. In 3 minutes, 10 grams of the substance Bismuth are reduced to 9 grams through radioactive decay.

frag replacements (a) Find the value of k.

Higher Mathematics

O The half-life of a substance is the length of time in which half the substance decays. $\begin{array}{c} x \\ x \\ y \end{array}$ (b) Find the half-life of Bismuth.

			*****	no	n-calc	Ci	alc	cal	c neut	Content Reference :	3.3
	part	marks	Unit	C	A/B	С	A/B	C	A/B	Main Additional	
	(a) (b)	3 2	3.3 3.3			1	2 2	477 N.		3.3.7 3.3.7	Source 1995 P1 qu.18
		•1	$9 = 10e^{-3k}$								
rag replacements		•2	$-3k = \log_e$	0.9							
<u>000 100 100 100 100 100 100 100 100 100</u>	22	•3	0.04								
U v		•4	$e^{-kt}=0\cdot 5$								
х 1/		•5	a correct v	alue	for t					2	

replacements

3

		PStrag replaceme	ents	
			0	
Hi	igher	Mathematics	y^{x} Quest	
[SQA] 19	9. (a	For a particular radioactive substance the mass m (in grams) at time t (in years) is given by $m = m_0 e^{-0.02t}$ where m_0 is the original mass.		
		If the original mass is 500 grams, find the mass after 10 years.		(2)
	(b) The half-life of any material is the time taken for half of the mass to decay.		
frag replacemer	nts	Find the half-life of this substance.		(3)
	$O \\ x (c) \\ y$) Illustrate ALL of the above information on a graph.		(3)

O<math>y b

Higher Mathematics
[SQA] 20. The radioactive element carbon-14 is sometimes used to estimate the age of organic remains such as bones, charcoal, and seeds.
Carbon-14 decays according to a law of the form
$$y = y_0 e^{kt}$$
 where y is the amount of radioactive nuclei present at time t years and y_0 is the initial amount

of radioactive nuclei.

- The half-life of carbon-14, i.e. the time taken for half the radioactive nuclei (a)to decay, is 5700 years. Find the value of the constant k, correct to 3 significant figures.
- What percentage of the carbon-14 in a sample of charcoal will remain after O (b) x 1000 years?

y

frag replacements

part marks	marke	TTott	no	n-calc	C	alc	cal	c neut	Content Reference :	3.3
part	marks	Om	C	A/B	C	A/B	С	A/B	Main Additional	0.0
(a) (b)	3 3	3.3 3.3			1	2 3			3.3.7 3.3.7	Source 1997 Paper : Ou.8
(a)	• ¹ • ² 3	$\frac{1}{2}y_0 = y_0$ $\ln \frac{1}{2} = 570$	e ^{5700k} 00k							
(b)	• ⁴ • ⁵	$y = y_0 e^{-4}$ $\frac{y}{y_0} = \dots$	0.000122	2×1000						
(b)	•4 •5 •6	$y = y_0 e^{-1}$ $\frac{y}{y_0} = \dots$ 88.5%	0.000122	2×1000						
(b)	•4 •5 •6	$y = y_0 e^{-1}$ $\frac{y}{y_0} = \dots$ 88.5%	0.000122	2×1000						

frag replacements

replacements

(3)

(3)

			PStrag replacements
			О
Highe	er Ma	athematics	y^{x} Quest
21.	The whe cm.	intensity I_t of light is reduced as it passes through a filter accordere I_0 is the initial intensity and I_t is the intensity after passing th k is a constant.	ding to the law $I_t = I_0 e^{-kt}$ rough a filter of thickness t
ents	(a)	A filter of thickness 4 cm reduces the intensity from 120 cand Find the value of <i>k</i> .	le-power to 90 candle-power.
$O \\ x \\ y$	(b)	The light is passed through a filter of thickness 10 cm. Find th intensity.	ne percentage reduction in its

50 - S.S.		77. 11	no	n-calc	C	alc	ca	lc neut	Content Reference :	3.3
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	0.0
(a)	4	3.3			2	2			3.3.7	Source 1999 Paper 2
(b)	3	3.3	0		1	2			3.3.7	Qu. 7

	n	3202		48.99-39. 25		
	(a)	•1 90 = $120e^{-4k}$				
		• ² $e^{-4k} = 0.75$	or $\ln 90 = \ln$	$120 + \ln e^{-4k}$		
		• ³ $\ln 0.75 = -4k$				
		• $k = 0.0719$				
	(b)	•5 $I_{10} = I_0 e^{-10 \times 10^{-10}}$	0.0719 stated	or implied by $ullet^6$		
		•6 $\frac{l_{10}}{l_0} = 0.487$				
		• ⁷ 51.3% reduc	ction			
frag replacements						
0						
x						
y	L		- <u>1</u>		 	 1000

rep<u>lacements</u>

21.

[SQA]

frag replacements

4

(b) Show that p and q satisfy a relationship of the form $p = aq^b$, stating the values of a and b.

Part	Marks	Level	Calc.	Content		Answer	U3 OC3
<i>(a)</i>	2	A/B	CR	G3		P = 0.6Q + 1.8	2000 P2 Q11
(b)	4	A/B	CR	A33		a = 6.05, b = 0.6	
•1 •2 •3 •4 •5 •6	ic: inte ic: stat ic: inte ss: kno x log y ss: kno log ic: inte	erpret gr e equ. o erpret str ow how ow how erpret su	radient f line raight li v to de to expre	ne al with <i>x</i> of ess number as ro logs	Ma In	• ¹ $m = \frac{1 \cdot 8}{3} = 0.6$ • ² $P = 0.6Q + 1.8$ ethod 1 • ³ $\log_e p = 0.6 \log_e q + 1.8$ • ⁴ $\log_e q^{0.6}$ • ⁵ $\log_e 6.05$ • ⁶ $p = 6.05q^{0.6}$ ethod 2 $p = \ln aq^b$ • ³ $\ln p = \ln a + b \ln q$ • ⁴ $\ln p = 0.6 \ln q + 1.8$ state $by \cdot 5$ or $\cdot 6$ • ⁵ $\ln a = 1.8$ • ⁶ $a = 6.05, b = 0.6$	ed or implied

replacements

- O (b) Hence or otherwise show that *I* and *t* satisfy a relationship of the form
 - $I = kt^r$ stating the values of k and r.

x y

non-calc calc neut Content Reference : calc part marks Unit 3.3 A/B A/B A/B Main Additional Source 1.1.1, 1.1.7 (a) 3 1.1 3 1993 Paper 2 (b) 4 3.3 4 3.3.6 Qu.10 (a) $m = -\frac{4}{5}$ stated or implied y = mx + 4 stated or implied $\log_e I = -\frac{4}{5}\log_e t + 4$ (b) log_t log_ 54.6t $=54.6t^{-0.8}$ frag replacements Ο x y

replacements

(4)

	4	A/E	B NC	A33	y = z	$5x^{-2}$		2002 P1 Q12
•1 •2 •3 •4	ic: ir ss: u ss: u pd: so	nterpret se log la se log la olve log	graph ws ws equatior	1	• $1 \log_{\bullet^2} \log_{\bullet^3} \frac{1}{2} \log_{\bullet^3} \frac{1}{2} \log_{\bullet^4} \frac{1}{2} $	$g_5 y = -2(g_5 y) = \log_5 y = \log_5 y$ $\cdot + \log_5 5 = 5x^{-2}$	$\log_5 x) + 1$ $5x^{-2} + \dots$	

4

Higher Mathematics

- [SQA] 26. (a) The variables x and y arc connected by a relationship of the form $y = ae^{bx}$ where a and b are constants. Show that there is a linear relationship between $\log_{a} y$ and x.
 - (b) From an experiment some data was obtained. The table shows the data which lies on the line of best fit.

x	3.1	3.5	4.1	5.2
у	21 876	72 631	439 392	11 913 076

frag replacements

Ο

x y The variables x and y in the above table are connected by a relationship of the form $y = ae^{bx}$. Determine the values of a and b.

(6)

(3)

Content Reference : non-calc calc calc neut 3.3 marks Unit part C A/B C A/B С A/B Main Additional Source 3.3 3.3.7 (a) 3 3 1998 Paper 2 (b) 6 3.3 6 3.3.5 Qu. 11 $\log_e y = \log_e a e^{bx}$ •1 (a) .2 $\log_e y = \log_e a + \log_e e^{bx}$ •3 $\log_e y = \log_e a + bx$ •4 (b) evidence for strategy being carried out will be appearance of two equations at •⁵ stage e.g. $3.1b + \log a = 9.99$, $5.2b + \log a = 16.29$ strategy: know to subtract b = 3 $a = e^{0.69}$ frag replacements *a* = 2 Ο x y

replacements

Ο y^{x} Quest

Higher Mathematics

frag replacements
[SQA] 27.O
The point Q (q, k) lies on the curve with equation
 $y = \ln x$.

- х у Find a relationship between p and q and hence find q when p = 5.

		1100000000000	** **	no	n-calc	C	alc	cal	lc neut	Content Reference :	2.2
	part	t marks	Unit	С	A/B	С	A/B	С	A/B	Main Additional	5.5
		4	3.3					1	3	3.3.5	Source 1993 P1 qu.20
rag replacements	5	\cdot^{1} k \cdot^{2} lo	$= \log_e p$ $\log p = \frac{1}{2} \log p$	and k	$=\frac{1}{2}\log_e$ $p=e^k$	q and	$q = e^2$	'k			
C)	• ³ q	$= p^2$ or	p = 4	2					3	

replacements

[SQA] 28. Six spherical sponges were dipped in water and weighed to see how much water each could absorb. The diameter (x millimetres) and the gain in weight (y grams) were measured and recorded for each sponge. It is thought that x and y are connected by a relationship of the form $y = ax^b$.

By taking logarithms of the values of x and y, the table below was constructed.

A graph was drawn and is shown above.

frag replacements

Ο

х

SN.uk.net

- O (a) Find the equation of the line in the form Y = mX + c. (3)
- x (b) Hence find the values of the constants a and b in the relationship $y = ax^{b}$. (4)

[END OF WRITTEN QUESTIONS]