Firrhill High School

Mathematics Department

Level 5 Assessment Questions

(1) 2010 Paper 2 Q.13

The depth of water, D metres, in a harbour is given by the formula

$$D = 3 + 1.75 \sin 30 h^{\circ}$$

where h is the number of hours after midnight.

- (a) Calculate the depth of water at 5 am.
- (b) Calculate the maximum difference in depth of the water in the harbour.

Do not use a trial and improvement method.

2

2

(2) 2008 Paper 2 Q.12

The diagram shows part of the graph of $y = \tan x^{\circ}$.

The line y = 5 is drawn and intersects the graph of $y = \tan x^{\circ}$ at P and Q.

- (a) Find the x-coordinates of P and Q.
- (b) Write down the x-coordinate of the point R, where the line y = 5 next intersects the graph of $y = \tan x^{\circ}$.

k	KU	RE	
		3	
		1	

(3) 2007 Paper 1 Q.13

(4) 2006 Paper 2 Q.10

Solve algebraically the equation

Her height, h metres, above the ground is given by the formula

$$h = -31 \cos t^{\circ} + 33$$

where t is the number of seconds after the start.

- (a) Calculate Emma's height above the ground 20 seconds after the start.
- (b) When will Emma first reach a height of 60 metres above the ground?
- (c) When will she next be at a height of 60 metres above the ground?

2 3	*	
	2	3

(5) 2005 Paper 2 Q.11

$$\sqrt{3}\sin x^{\circ} - 1 = 0 \qquad 0 \le x < 360.$$

$$\sqrt{3}\sin 2x^{\circ} - 1 = 0 \qquad 0 \le x < 90.$$

KU	RE
3	
	1

(6) 2004 Paper 1 Q.9

The graph of $y = a \cos bx^{\circ}$, $0 \le x \le 90$, is shown below.

Write down the values of a and b.

2

(7) 2004 Paper 2 Q.10

Solve algebraically the equation

$$4 \sin x^{\circ} + 1 = -2$$
 $0 \le x < 360$.

RE

(8) 2002 Paper 2 Q.8

The diagram shows part of the graph of $y = \sin x^{\circ}$.

The line y = 0.4 is drawn and cuts the graph of $y = \sin x^{\circ}$ at A and B. Find the x-coordinates of A and B.

(9) 2001 Paper 2 Q.7

Solve algebraically the equation

$$\tan 40^{\circ} = 2\sin x^{\circ} + 1$$
 $0 \le x < 360$.

3

(10) 2000 Paper 2 Q.9

The height, H metres, of the tide-mark in a harbour is given by the formula

$$H = 14 + 3 \cos(30n)^{\circ}$$

where n is the number of hours after midnight.

- (a) Find the height of the tide-mark at 2 am.
- (b) When, after midnight, is the first time that the height of the tide-mark is 12.5 metres?

2

3

(11) 1999 Paper 2 Q.5

Solve algebraically the equation

$$2 + 3\sin x^{\circ} = 0$$
 for $0 \le x < 360$.

3

(12) 1998 Paper 2 Q.7

Solve, algebraically, the equation

$$7\cos x^{\circ} - 2 = 0$$
, for $0 \le x < 360$.

KU	RE
3	

(13) 1997 Q.13

The diagram shows the graph of $y = k \sin ax^{\circ}$, $0 \le x < 360$.

Find the values of a and k.

2

(14) 1996 Q.13

Solve algebraically the equation

$$5 \tan x^{\circ} - 9 = 0$$
, for $0 \le x < 360$.

KU	RA
3	

(15) 1997 Q.16

A toy is hanging by a spring from the ceiling. Once the toy is set moving, the height, H metres, of the toy above the floor is given by the formula

$$H = 1.9 + 0.3\cos(30t)^{\circ}$$

t seconds after starting to move.

- (a) State the maximum value of H.
- (b) Calculate the height of the toy above the floor after 8 seconds.
- (c) When is the height of the toy first 2.05 metres above the floor?

1

3

3

(16) 1995 Q.17

The diagram shows the graph of $y = a\cos bx^{\circ}$, $0 \le x \le 360$. Find the values of a and b.

2

(17) 1994 Q.17

Solve the equation

$$5 \sin x^{\circ} + 2 = 0$$
, for $0 \le x < 360$.

3

(18) 1992 Paper 1 Q.13

The diagram shows the graph of $y = a\sin bx^{\circ}$, $0 \le x \le 180$.

Find the values of a and b?

(19) 1991 Paper 2 Q.7

Marks

Marks

Due to tidal variations, the depth of water in a harbour is given by the formula

$$D = 6 + 4\cos(32t + 108)^{\circ},$$

where D is the depth of water in metres and t is the time in hours after midnight on Monday night.

- (a) What were the greatest and least depths of water in the harbour? (2)
- (b) At what time was low tide on Tuesday morning?
- (c) A boat needs at least 4 metres of water to leave the harbour.

 Can the boat leave the harbour at 3.00 p.m. on Tuesday?

 Justify your answer.

 (3)