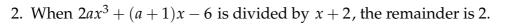

Polynomials Past Papers Unit 2 Outcome 1

Multiple Choice Questions

Each correct answer in this section is worth two marks.


- 1. Given $p(x) = x^2 + x 6$, which of the following are true?
 - I. (x+3) is a factor of p(x).
 - II. x = 2 is a root of p(x) = 0.
 - A. Neither I nor II is true
 - B. Only I is true
 - C. Only II is true
 - D. Both I and II are true

Ο

 y^{x} Quest

What is the value of *a*?

- A. $\frac{5}{3}$
- B. $-\frac{4}{9}$
- C. $-\frac{5}{9}$
- D. $-\frac{5}{7}$

	Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source				
	С	2.1	С	0.41	0.77	NC	A21	HSN 174				
	Let $f(x) = 2ax^3 + (a+1)x - 6$.											
	If the remainder is 2 then $f(-2) = 2$, ie											
	$2a \times (-2)^{3} + (a+1) \times (-2) - 6 = 2$											
	-16a - 2a - 2 - 6 = 2											
PSfrag replacemen	ts			-18	a = :		- [
(OX Y				a = -	5)9	Option	C				

[END OF MULTIPLE CHOICE QUESTIONS]

Written Questions

[SQA] 3. (a) Express $f(x) = x^2 - 4x + 5$ in the form $f(x) = (x - a)^2 + b$.

- (*b*) On the same diagram sketch:
 - (i) the graph of y = f(x);
 - (ii) the graph of y = 10 f(x).
- (c) Find the range of values of x for which 10 f(x) is positive.

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
<i>(a)</i>	2	С	NC	A5	a = 2, b = 1	2002 P1 Q7
<i>(b)</i>	4	С	NC	A3	sketch	
(C)	1	С	NC	A16, A6	-1 < x < 5	
• ² • ³ • ⁴ • ⁵ • ⁶	square	erpret m erpret y-: ect in x- nslate pa	.g. co inimum intercep axis ırallel to	ot	 ¹ a = 2 ² b = 1 ³ any two from: parabola; min. t.p. (2,1); ⁴ the remaining one from al ⁵ reflecting in <i>x</i>-axis ⁶ translating +10 units, <i>y</i>-axis ⁷ (-1,5) i.e1 < x < 5 	bove list

[SQA] 4. Find the values of x for which the function $f(x) = 2x^3 - 3x^2 - 36x$ is increasing.

	manles	Their	no	n-calc	C	cale ca		c neut	Conte	nt Reference :	2.1
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main	Additional	Source
	4	2.1	2	2					1.3.11	2.1.9	
1982	8 7								1.0.11	-	1996 P1 qu.16
		know to $\frac{dy}{dx} = 6x^2$.		1000000 TA	0	stated	l or in	nplied by	y the evi	dence for • ⁴ .	

frag replacements

Oxy

0 x SN.uk.net Y

2

4 1

Higher Mathematics

[SQA] 5.

- (i) Write down the condition for the equation $ax^2 + bx + c = 0$ to have no real roots.
- (ii) Hence or otherwise show that the equation x(x+1) = 3x 2 has no real roots. 2

ſ			11-24	no	n-calc	C	alc	cal	c neut	Content Reference :	2.1
	part	marks	Unit	C	A/B	C	A/B	С	A/B	Main Additional	1710
1	(i)	1	2.1					1		2.1.6	Source
	(ii)	2	2.1					2		2.1.6	1999 P1 qu.8
rag replacements O x		•2 :	$b^2 - 4ac =$ $x^2 + 6x + 9$ $b^2 - 4ac =$	= 0	5=0	OR	•3	(x + 3	B)(x+3)	= 0 so roots are $-3, -3$	

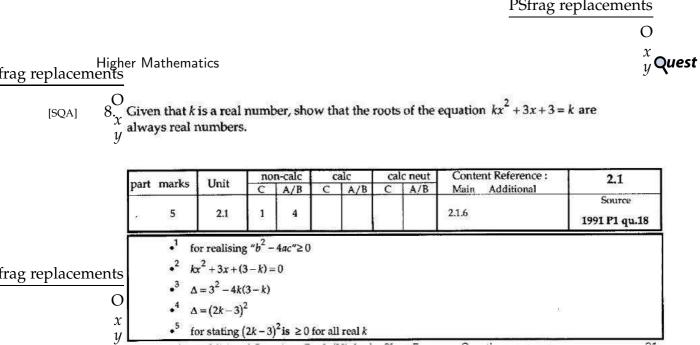
[SQA] 6. Show that the roots of the equation $(k-2)x^2 - (3k-2)x + 2k = 0$ are real.

4

3

1

00000	STATES STATES	17.14	no	n-calc	с	calc		ic neut	Content Reference :	: 2.1	
part	marks	Unit	C	A/B	C	A/B	С	A/B	Main Additional		
	4	2.1					1	3	2.1.6	Source 1990 P1 qu.18	
_	• ¹ u	se discri	minant	tΔ					4		
	• ² △	k = (3k - 2)	$()^2 - 8k$	(k - 2)							
	• ³ 2	$k = k^2 + 4k$	k + 4								
	•4 ($(k+2)^2 \ge 0$) 50 ro	ots real					3		
		1.000									


0

x y

frag replacements

[SQA] 7. For what value of *k* does the equation $x^2 - 5x + (k + 6) = 0$ have equal roots?

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	3	С	CN	A18	$k = \frac{1}{4}$	2001 P1 Q2
•2	ss: knc ic: su discrimi pd: pro	bstitute nant	a, b	and <i>c</i> into	• ¹ $b^2 - 4ac = 0$ • ² $(-5)^2 - 4 \times ($ • ³ $k = \frac{1}{4}$	stated or implied by \bullet^2 (k+6)

9. Find the values of k for which the equation $2x^2 + 4x + k = 0$ has real roots. [SQA]

			Unit	I non		C	calc		c neut	Content Reference :	2.1
	part	2 <u>1122005555</u> 0	Unit	C	A/B	C	A/B	С	A/B	Main Additional	0.0 C 0.00 KA
	⁶ 0	2	2.1	2						2.1.7	Source 1993 P1 qu.3
	Γ	1									
ag replacements	5		iscrimina								
<u> </u>		• 1	6-8k≥0	for re	al roots	$\Rightarrow k \leq$	\$2				
C	1										
$\boldsymbol{\gamma}$											

10. For what value of *a* does the equation $ax^2 + 20x + 40 = 0$ have equal roots? [SQA]

			Their	no	n-calc	C	alc	cal	c neut	Content Reference :	2.1
	part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	3
	a.	2	2.1	2						2.1.7	Source 1996 P1 qu.2
		• 1	$b^2 - 4ac =$	0							
rag replacements	L 1	• ² 4	$a = 2\frac{1}{2}$								
0 1			2								
0	0										
x	1										
u V											

replacements

[SQA]

5

2

Higher Mathematics

[SQA]	11. Show that the equation $(1-2k)x^2 - 5kx - 2k = 0$ has real roots for all integer
	values of k .

Part	Marks 5	Level A/B	Calc. CN	Content A18, A16, 0.1	Answer U2 OC1 proof 2002 P2 Q9
\bullet^2 \bullet^3 \bullet^4		k out dis plify to ose to d	scrimina quadrat raw tab	int	 ¹ discriminant = ² disc = (-5k)² - 4(1 - 2k)(-2k) ³ 9k² + 8k ⁴ e.g. draw a table, graph, complete the square ⁵ complete proof and conclusion relating to disc.≥ 0

frag replacements

[SQA] $12\frac{O}{x}$ The roots of the equation (x-1)(x+k) = -4 are equal. y Find the values of k.

		10. /1 20. /1	11.11	no	n-calc	Ca	alc	ca	c neut	Content Reference :	2.1
	part 1	narks	Unit	C	A/B	С	A/B	C	A/B_	Main Additional	2
	2	5	2.1					1	4	2.1.7	Source 1995 P1 qu.20
ag replacements O		. 3	$x^{2} + kx - b^{2} - 4ac = (k-1)^{2} - k^{2} + 2k - k^{2}$	= 0 4(4 -)	c)						
x y			k = -5, k					01			

replacements

5

Ο

Higher Mathematics

13.

0

x

y

frag replacements

[SQA]

(ii)	Determine the nature of the roots of this equation when $k = 6$.	(2)
(iii)	Find the value of k for which $2x^2 + 4x - k = 0$ has equal roots.	(3)

	-		11.14	no	n-calc	C	alc	cal	c neut	Content Reference :	2.1
	part	marks	Unit	C	A/B	C	A/B	C	A/B	Main Additional	
	(a) (b)	4 7	1.2 2.1	4						1.2.6 2.1.6, 2.1.7, 0.1	Source 1996 Paper 2 Qu.4
	(a)	•1	$g(2x+1)$ $(2x+1)^2$			(b)				1 AND $2x^2 + 2k + 1$	
									$\frac{4x+k+}{x^2+4x-x^2}$	$1 - \left(2x^2 + 2k + 1\right) = 0$ $k = 0$	
		•4	$f\left(x^2+k\right)$ $2\left(x^2+k\right)$	+1			•7	$b^{2}-4$	lac = 16	$-4 \times 2 \times (-6) = 64$	
							• ⁸	so ro	ots real	& distinct	
							• ⁹ b	² - 4a	c = 16-	4×2×(−k)	
1 ,										r equal roots	
rag replacements							• ¹¹ k			er.	
0											
x y											

[SQA] 14. Factorise fully $2x^3 + 5x^2 - 4x - 3$.

	1.12		Unit	no	n-calc	Ca	ılc	cal	c neut	Content Reference :	2.1
	part	marks	Unit	С	A/B	С	A/B	С	A/B	Main Additional	F73667411
		4	2.1	4						2.1.3	Source 1989 P1 qu.2
1			strat: mak			ons or	2 trial (evalua	itions		
rag replacements			first linear	tactor							
0	E.	•3	quadratic	factor							
0	2	4	other linea	* facto						5	1
x	14										
replacements y			(x - 1)(2x +	1)(x+)	5)		<u>e d'a</u>		-	X	
0											
x										Questions	marked '[SQA]' © SQ
$y \square$	hsr] .uk.ne	et					Page	e 7		ers ⓒ Higher Still Note

Higher Mathematics

15. Find *p* if (x + 3) is a factor of $x^3 - x^2 + px + 15$. [SQA]

	-	marks	Unit	no	n-calc	c	alc	cal	c neut	Content Reference :	2.1
	part	marks	Qua	C	A/B	С	A/B	C	A/B	Main Additional	1
	•	3	2.1					3		2.1.1	Source 1990 P1 qu.1
ag replacements O		• ¹ s	strat: e.g.	and fl	-3)						
		1211	f(-3) = 0								
		• 1	<i>v</i> = −7								
x V											

frag replacements

[SQA]
$$16_{\chi}$$
 (a)

y L

a) Show that x = 2 is a root of the equation $2x^3 + x^2 - 13x + 6 = 0$.

y (b) Hence find the other roots.

		art marks		no	n-calc	C	alc	cal	c neut		onter	t Refere	ence :	2.1
	part	marks	Unit	C	A/B	C	A/B	C	A/B		lain	Additio	nal	Source
	(a) (b)	1 3	2.1 2.1	1 3						2.: 2.:				1999 P1 qu.1
_	Γ	•1	f(2) = 16 +	4 - 26	+6=0				•2	2 2	1	-13 10	6-6	
ag replacements			or				2	5	-3	0				
0			the appear of the 3rd						•3 2	$x^2 + 5$	x-3			
x									•4 -	$3, \frac{1}{2}$				
y				_	-			- 16		-	-	1	<u> </u>	a an

17. Find *k* if x - 2 is a factor of $x^3 + kx^2 - 4x - 12$. [SQA]

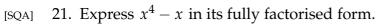
art marks	Unit	C	A/B	C	A/B	С	A/B	Main Additional	2.1
38-33	C A/B			C A/B		C.	A/D	Main Additional	11 (Paire)
3	2.1					3		2.1.1	Source 1992 P1 qu.3
• ²	f(2) = 0	k-8-	12			2 те	mainde		
	•1 •2	• $f(2) = 8 + 4$	• $f(2) = 8 + 4k - 8 - 6k - 8k - 8k - 8k - 8k - 8k - 8k$	• $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 0$	• $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 0$	• $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 0$	• $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 0$ • $f(2) = 0$	• $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 0$ • $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 0$	• $f(2) = 8 + 4k - 8 - 12$ • $f(2) = 0$ •

18. When $f(x) = 2x^4 - x^3 + px^2 + qx + 12$ is divided by (x - 2), the remainder is 114. [SQA] One factor of f(x) is (x + 1). Find the values of *p* and *q*.

	Sector 1		T1.44	no	n-calc	C	alc	cal	c neut	Content Reference :	2.1
	part	marks	Unit	С	A/B	С	A/B	С	A/B	Main Additional	
		5	2.1					5		2.1.1	Source 1991 P1 qu.6
rag replacements O		• ² f((2) = 114 (-1) = 0 p + 2q = 78								
		• ⁴ p	-q = -15								
x y		• ³ p	= 8, q = 23			4 /4	w	01			

19. One root of the equation $2x^3 - 3x^2 + px + 30 = 0$ is -3. [SQA]

Find the value of p and the other roots.


		1000000	11.4	no	n-calc	C	alc	cal	lc neut	Content I	Refer	ence :		2.1
	part	marks	Unit	С	A/B	C	A/B	C	A/B	Main A	dditic	onal		
	•	4	2.1	4						2.1.2			2	Source 1993 P1 qu.7
	-	• ¹ f	(3) = -54	- 27 -	3p+30	or s	ynth. d	ivisio	n e.g	3	2	-3	p	30
ag replacements			v = −17								2	6 9		$\frac{-3p-81}{-3p-51}$
О	20	• ³ 2	$x^2 - 9x + 1$	10						and	1 –3	p - 51 =	1.1.1	190
<i>x</i>		•4 2	$\frac{5}{2}$											

frag replacements [SQA] 20. (a) Show that (x-3) is a factor of f(x) where $f(x) = 2x^3 + 3x^2 - 23x - 12$. $\begin{array}{l} x \\ y \end{array}$ (b) Hence express f(x) in its fully factorised form.

			Their	no	n-calc	Ci	alc	çal	c neut	Content Refere	ence :	2.1
	part	marks	Unit	C	A/B	C	A/B	С	A/B	Main Additio	onal	
	(a)	2	2.1	2	1	1.00	100000			2.1.3		Source
	(b)	2	2.1	2						2.1.3		1995 P1 qu.2
		3	$f(3) = 2 \times$ $= 0$ $2x^{2} + 9x$	+ 4		3×3-	-12	or equ	ivalent o	division		
			(x-3)(2)	x+1)(x	+4)			(ana)	<u> </u>	6438		
O_x] .uk.ne										narked '[SQA]' ⓒ
$y \hookrightarrow$	115	l.uk.ne	t					Pag	e 9		All other	s ⓒ Higher Still

 O_{y}^{x} Quest

Higher Mathematics

			Unit	no	n-calc	Ca	dc	cal	c neut	Content Reference :	2.1
	part	marks	Unit	C	A/B	С	A/B	C	A/B	Main Additional	Santa
		4	2.1 4							2.1.3	Source 1996 P1 qu.7
		, 1	$x(x^3-1)$				0	R		nthetic division or $eval. f(k$)
ag replacements		2	synthetic	livicio	livision or eval. $f(k)$			•2	• ² lin	ear factor = $(x-1)$	
o o o o o o o o o o o o o o o o o o o		1000	linear fact						• ³ cul	bic factor = $\left(x^3 + x^2 + x\right)$	
x			$x(x-1)(x^2+x+1)$						• ⁴ x(x	$(x-1)(x^2+x+1)$	

frag replacements

[SQA]
$$22 \frac{O}{x}$$
 (a) Find a real root of the equation $2x^3 - 3x^2 + 2x - 8 = 0$.
y (b) Show algebraically that there are no other real roots.

		art marks	Unit	no	n-calc	C	alc	cal	c neut	Content Reference :	2.1
	part	marks	Onn	C	A/B	C	A/B	Ć	A/B	Main Additional	
	(a)	2	2.1	2						2.1.2	Source
	(b)	3	2.1	3						2.1.7	1997 P1 qu.5
ag replacements O x y			looking fo $x = 2$ ex					•4		x + 4 $ac = 1 - 4 \times 2 \times 4$ ac < 0 means no real roots	

[SQA] 23. Express $x^3 - 4x^2 - 7x + 10$ in its fully factorised form.

	oart marks	s Unit	no	n-calc	C	alc	cal	c neut	Content Reference :	2.1
F	art mark	SUM	C	A/B	С	A/B	С	A/B	Main Additional	
	. 4	2.1							2.1.3	Source 1998 P1 qu.2
g replacements	• ¹ • ²	evaluating				y any m	nethod		• ³ quad factor <i>e.g.</i> $x^2 - 3$	x-10
0		find 1 valu e.g. f(1) or			,				• $(x-1)(x+2)(x-5)$	

replacements

4

3

4

- 24. (a) Given that x + 2 is a factor of $2x^3 + x^2 + kx + 2$, find the value of k. [SQA]
 - (b) Hence solve the equation $2x^3 + x^2 + kx + 2 = 0$ when k takes this value.

3 2

3

1

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	3	С	CN	A21	k = -5	2001 P2 Q1
(b)	2	С	CN	A22	$x = -2, \frac{1}{2}, 1$	
•2 •3 •4	ss: u f(evalua pd: pro pd: pro ss: finc pd: pro	ation) cess cess d a quad		division or ctor	• ¹ $f(-2) = 2(-2)^3 + \cdots$ • ² $2(-2)^3 + (-2)^2 - 2k + 2$ • ³ $k = -5$ • ⁴ $2x^2 - 3x + 1$ or $2x^2 + x^2 + x - 2$ • ⁵ $(2x - 1)(x - 1)$ or $(2x - 1)(x - 1)$ and $x = -2, \frac{1}{2}, 1$	

25. [SQA]

- (*a*) Write the equation $\cos 2\theta + 8\cos \theta + 9 = 0$ in terms of $\cos \theta$ and show that, for $\cos \theta$, it has equal roots.
- (*b*) Show that there are no real roots for θ .

	800-5 11	07.0	77.14	no	n-calc	C	alc	cal	c neut	Content Reference :	2.3
	part	marks	Unit	C	A/B	C	A/B	C	A/B	Main Additional	
	(a)	3	2.3	1.				1	2	2.3.3 2.1.6	Source
	(b)	1	1.2						1	1.2.1	1998 P1 qu.18
	- 280	1.4	$2\cos^2\theta - 1$						4 000	$\theta = -2$ has no solution	
g replacements	; 								• cos	$\phi = -2$ has no solution	
	-	•2	2(0	$\cos\theta + 2$	$(2)^2 = 0$						
0	1	,	or "b ²	- 4ac'	[°] = 16 - 4	x1×	4				
x			$\cos\theta = -2$								

fr

¥.

 $y = kx^2 - 8x + k$

4

Higher Mathematics

26. Calculate the least positive integer value of k so that the [SQA] graph of $y = kx^2 - 8x + k$ does not cut or touch the x-axis.

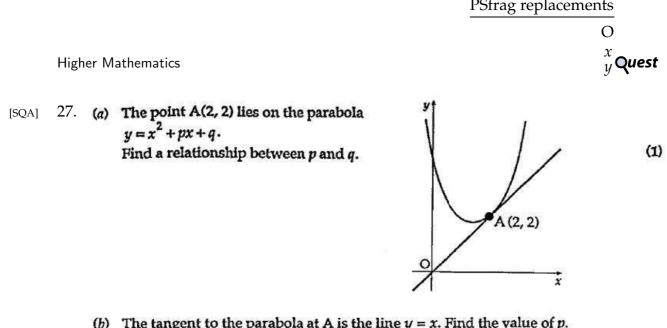
frag replacements

- 0 x
- y

Unit	A.C.A.	n-calc		alc		c neut	Content Reference :	2.1
2.1	C 1	A/B 3	C	A/B	<u> </u>	A/B	Main Additional	Source 1992 P1 qu.17

frag replacements

Ь •3 Ο 6 •⁴ k=5x y


part marks

4

.1 S

.2

(b) The tangent to the parabola at A is the line y = x. Find the value of p. Hence find the equation of the parabola.

frag replacements 👔

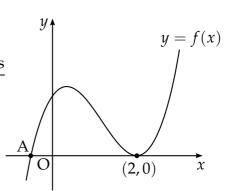
 $\frac{dts}{dts} = (c) \quad \text{Using your answers for } p \text{ and } q, \text{ find the value of the discriminant of } x^2 + px + q = 0. \text{ What feature of the above sketch is confirmed by this}$

 $\begin{array}{c} x \\ y \end{array}$ value?

	Lucia		77.14	no	n-calc	c	alc	cal	c neut	Content Reference :	2.1
	part	marks	Unit	C	A/B	C	A/B		A/B_	Main Additional	
5	(a)	1	0.1		1			1		0.1	Source
	(6)	6	1.3		1			2	4	1.3.7, 0.1	1994 Paper 2
	(c)	2	2.1						2	2.1.6	Qu.9
10								t e. Willi			
	(a)	. ¹	2p+q=-2	2							
	chert.		- r · 1 ·	(E)							
	(6)	2									
	(0)	•2	strategy								
	1	• ³	2x+p								
	L		- 10								
		•	gradient	= 1, c	or equiv	alent					
		•5	4+p								
		.6	p = -3								
		1000	q=4								
	I 1		9-4								
rag replacements	(c)	.8	∆=-7								
rag replacements											
0	L	.9	√-7 mea	ns no	roots						
x											
y		a 2	121			10.00					

replacements

(6)


(2)

PStrag replacements

Higher Mathematics

- [SQA] 28. The diagram shows part of the graph of the curve with equation $y = 2x^3 7x^2 + 4x + 4$.
 - (a) Find the x-coordinate of the strand point.
 - (*b*) Factorise $2x^3 7x^2 + 4x + 4$.
 - (*c*) State the coordinates of the point A and hence find the values of *x* for which $2x^3 7x^2 + 4x + 4 < 0$.

5

3

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	5	С	NC	C8	$x = \frac{1}{3}$	2002 P2 Q3
<i>(b)</i>	3	С	NC	A21	(x-2)(2x+1)(x-2)	
(C)	2	C	NC	A6	$A(-\frac{1}{2},0), x < -\frac{1}{2}$	
2 3 4 5 6 6 7 8 8 9	pd: star pd: con ss: stra division ic: extr	erentiate ow to set t solving pplete sc ategy fo ract quae pplete th erpret th	e deriva g proces olving p r cubic dratic fa ne cubic e factor	tive to zero ss of equation rocess , e.g. synth. actor factorisation s	• ¹ $f'(x) = \dots$ • ² $6x^2 - 14x + 4$ • ³ $6x^2 - 14x + 4 = 0$ • ⁴ $(3x - 1)(x - 2)$ • ⁵ $x = \frac{1}{3}$ ···· 2x ² - 3x - 2 • ⁸ $(x - 2)(2x + 1)(x - 2)$ • ⁹ $A(-\frac{1}{2}, 0)$ • ¹⁰ $x < -\frac{1}{2}$	

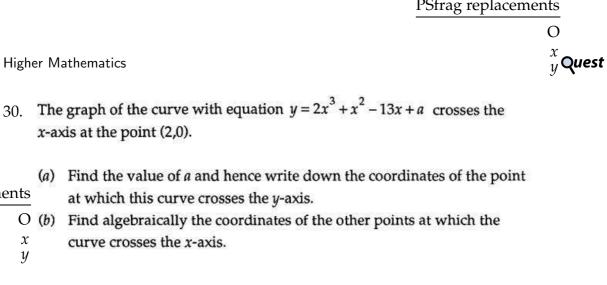
4

3

3

Higher Mathematics

[SQA] 29.


- (*a*) The function *f* is defined by $f(x) = x^3 2x^2 5x + 6$. The function *g* is defined by g(x) = x - 1. Show that $f(g(x)) = x^3 - 5x^2 + 2x + 8$.
- (*b*) Factorise fully f(g(x)).
- (c) The function k is such that $k(x) = \frac{1}{f(g(x))}$.

For what values of x is the function k not defined?

	marks	Unit	nor	n-calc	C	alc	cal	c neut	Content Reference :	0.1
part	marks	Unit	C	A/B	C	A/B	C	A/B	Main Additional	2.1
(a)	4	1.2	4						1.2.6	Source
(b)	3	2.1	3						2.1.3	1990 Paper :
(c)	2	1.2	2						1.2.1	Qu. 6
1990-01			_				-			
(a)		f(g(x)) = f	f(x-1)							
		$(x-1)^3 - 2$		$^{2} - 5(x -$	-1)+6	5				
		$(x-1)^3 = 3$								
	•4	$-2x^2 + 4x$	-2-5	x + 5 + 6	and	comple	eting a	argumen	nt	
(b)	•5	first "0"	e.g.			28 -6-8 -40				
(b)				1	-3 -					
(b)	•6	$x^2 - 3x - 3$	4 = (x +	1 - 1)(x - 4	-3 -					
(b)	•6		4 = (x +	1 - 1)(x - 4	-3 -					
	• ⁶ •7	$x^2 - 3x - 4$ $(x - 2)(x + 4)$	4 = (x + - 1)(x -	1 - 1)(x - 4 4)	-3 - 1)	-4 0				
(b) (c)	• ⁶ •7 • ⁸	$x^2 - 3x - 3$	4 = (x + - 1)(x ator (=	1 - 1)(x - 4 4)	-3 - 1)	-4 0	≠0			

frag replacements

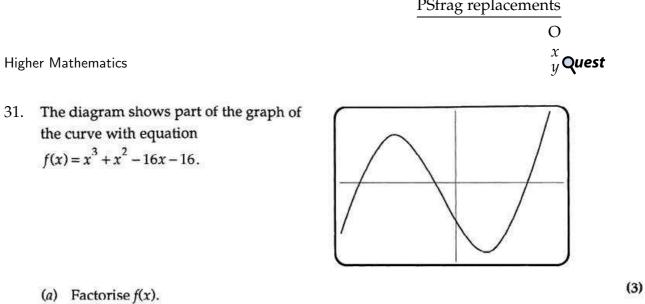
(3)

(4)

Higher Mathematics

[SQA] x-axis at the point (2,0).

frag replacements


O (b) Find algebraically the coordinates of the other points at which the x curve crosses the x-axis.

y

arear.	0000000000	77.34	n	on-calc	C	alc	cal	c neut	Content Reference :	2.1
part	marks	Unit	C	A/B	C	A/B	С	A/B	Main Additional	23393394445
(a)	3	2.1	3						2.1.3	Source
										1994 Paper 2
(b)	4	2.1	4				_		2.1.3	Qu.1
(a)	•1	strategy	0							
		eg	2	2	1	-13	3	a		
					4	10	8	-6		
				2	5	-3	9	0		
		or	f(2) =	0 = 16 +	4 – 26	+ a				
	• ²	<i>a</i> = 6								
	•3	(0,6)								
(b)		$2x^2 + 5x$								
	•5	(x+3)(2	(x-1)							
	•6	(x+3)(2) x = -3, (-3,0),	$\frac{1}{2}$							
	7	(-3,0),	$(1 \ 0)$							

frag replacemen

[SQA]

frag replacements (b) Write down the co-ordinates of the four points where the curve crosses

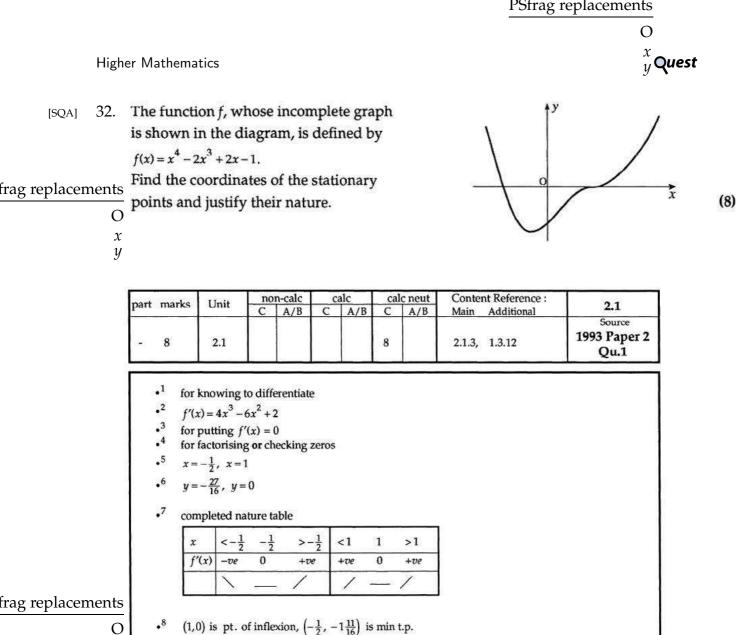
the *x* and *y* axes. Ο

(a) Factorise f(x).

the curve with equation $f(x) = x^3 + x^2 - 16x - 16.$

Higher Mathematics

(c) Find the turning points and justify their nature. х y


(2)

(6)

a a a a a a a a a a a a a a a a a a a		Unit	no	n-calc	C	alc	ca	lc neut	Content Reference :	
part	marks	Unit	С	A/B	С	A/B	C	A/B	Main Additional	2.1
(a)	3	2.1	3						2.1.3	Source
(b)	3 2 6	1.2	2						1.2.9	1992 Paper 2
(c)	6	1.3	6						1.3.12	Qu.1
(a)	•1 ai	ny linear f	factor							
	82251	orrespond		adratic	factor	ŕ				
	1200	(x) = (x + 1)								
	, j	(x) - (x +	I/LL -	(1 T T)						
(b)	•4 F	or all 3 pc	oints of	n x-axis						
0.000.00),-16)		4.55.000.000						
(c)	• ⁶ f	$f(x) = 3x^2$	+2x -	16						
		se $f'(x) =$								
	1000	1.83								
		= 2, an	d x =	$-\frac{8}{3}$						
	• ⁹ y	=−36, a	and y	$=\frac{400}{27}(1$	4.8)					
	٢F	$-\frac{8}{3}$	8	$-\frac{8}{3}^+$	2	2 2	۲Ì			
	• ¹⁰	f'(x) +		3		0 +				
	1+	1 (4)			100					
1	۲L			_	1	2201 3				
	• ¹¹ n	nax at (-	$\frac{8}{3}, \frac{400}{27}$, min a	at (2,-	-36)				

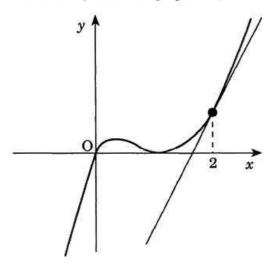
frag replacements

.8 Ο х

y

replacements

0 x **hsn**.uk.net Y


 O_{y}^{x} Quest

(4)

(5)

Higher Mathematics

[SQA] 33. The diagram shows a sketch of part of the graph of $y = x^3 - 2x^2 + x$.

(a) Show that the equation of the tangent to the curve at x = 2 is y = 5x - 8.

frag replacements

\overline{O} (b) Find algebraically the coordinates of the point where this tangent meets

x the curve again.

y

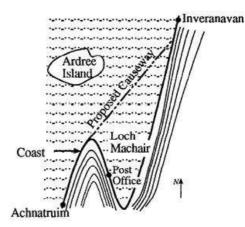
	marks	Unit	no	n-calc	C	alc	cal	lc neut	Conte	nt Reference :	2.1
part	marks	Unit	C	A/B	C	A/B	С	A/B	Main	Additional	1
(a)	4	1.3	4						1.3.9,	117	Source
(b)	5	2.1	5				Si.	1 1	2.1.2,		1995 Paper 2
(0)	3	2.1	5				ē		2.1.2,	2.1.0	Qu.2
(1 d	,									
(a)	•1	$\frac{l}{c} = \dots$									
	• ² 3:	$x^2 - 4x + 1$									
	• ³ m	x=2 = 5									
	•4 1/	-2=5(x-	- 2)								
	y	2-0(1	-)								
(b)	• ⁵ e	quate 'y's									
(b)	• ⁵ eo	quate 'y's $3^3 - 2x^2 - 4$	1x+8=	= 0							
(b)	• ⁶ x	$x^{3}-2x^{2}-4$	1x + 8 =								
(b)	• ⁶ x	$3^3 - 2x^2 - 4$ g. synthet	lx + 8 = tic divi	ision							
(b)	• ⁶ x	³ – 2x ² – 4 g. synthet ne appeara	lx + 8 = tic divi	ision							
(b)	• ⁶ x	$3^3 - 2x^2 - 4$ g. synthet	lx + 8 = tic divi	ision							
(b)	• ⁶ x ² • ⁷ e. • ⁸ th	³ – 2x ² – 4 g. synthet ne appeara	lx + 8 = tic divi ance of	ision							
(b)	• ⁶ x ² • ⁷ e. • ⁸ th	$x^{3} - 2x^{2} - 4$ g. synthether the appears $x^{2} - 4$ therefore $x^{2} - 4$ the appears $x^{2} - 4$	4x + 8 = tic divi ance of + 4	ision							
(b)	• ⁶ x • ⁷ e. • ⁸ th ou	$x^{3} - 2x^{2} - 4$ g. synthether the appears $x^{2} - 4$ therefore $x^{2} - 4$ the appears $x^{2} - 4$	1x + 8 = tic divi ance of + 4 +2	ision							

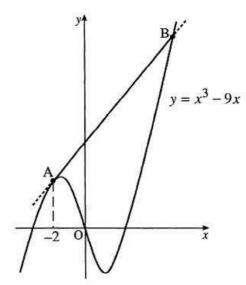
frag replacements

replacements

Questions marked '[SQA]' © SQA All others © Higher Still Notes

Ο


 $_{y}^{x}$ Quest


(5)

(7)

Higher Mathematics

[SQA] 34. The map shows part of the coast road from Achnatruim to Inveranavan. In order to avoid the hairpin bends, it is proposed to build a straight causeway, as shown, with the southern end tangential to the existing road.

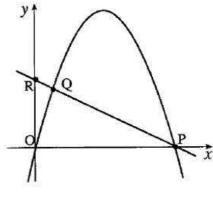
With the origin taken at the Post Office the part of the coast road shown lies along the curve with equation $y = x^3 - 9x$. The causeway is represented by the line AB. The southern end of the proposed causeway is at the point A where x = -2, and the line AB is a tangent to the curve at A.

y **hsn**.uk.net

(a) (i) Write down the coordinates of A.(ii) Find the equation of the line AB.

O (b) Determine the coordinates of the point B which represents the northern end $\begin{array}{c} x \\ y \end{array}$ of the causeway.

	mont	marka	Umit	nor	1-calc	Ca	alc	cale	c neut	Content I	Reference	e :	2	.1
	part (a)i (a)ii (b)	marks 1 4 7	Unit 0.1 1.1 2.1	C 1 4 2	<u>A/B</u> 5	С	A/B	С	A/B	Main A 0.1 1.1.6, 4 2.1.12 &	Additional		Sc 1998 I	ource Paper 2 u. 5
	(a)	•3	$y_{x=-2} = 10$ $\frac{dy}{dx} = \dots$ $3x^2 - 9$ $m_{x=-2} = 3$ y - 10 - 3(x)	+ 2)			(b)			x + 16 $6 = x^3 - 9x$ 2x - 16 = 0 -2	1	0 -2 -2	-12 4 -8	-16 160
$\frac{\text{frag replacements}}{\text{replacements}} \xrightarrow{\text{O}}_{\text{O}} \frac{y}{y}$								•10 •11 •12	e.g. x e.g. (x B is (4	$x^{2} - 2x - 8$ (x + 2)(x - 4) (x - 4)				



Higher Mathematics

x

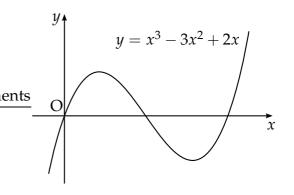
y

The parabola shown in the diagram has equation $y = 4x - x^2$ 35. [SQA] and intersects the x-axis at the origin and P.

2 2

4

Find the coordinates of the point P. (a)


- frag replacements R is the point (0, 2). Find the equation of PR. (b) 0
 - The line and the parabola also intersect at Q. Find the (c) coordinates of Q.

1555550 007577			no	n-calc	c	alc [cal	c neut	Content Reference :	0.7
part m	arks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	2.1
(a) 2		1.2	2			1			1.2.9	Source
(<i>b</i>) 2		1.1	2						1.1.7	1999 Paper
(c) 4		2.1	4						2.1.8	Qu. 4
(b)	² (4	$x - x^{2} = 0$ $(x - x^{2}) =$		stated o	r imp	lied by	•2			
(c)	⁵ 4:	or or $x - x^2 = 2$ $g. 2x^2 - 3$	$y - 2 =$ $y - 0 =$ $-\frac{1}{2}x$ $9x + 4$	$=-\frac{1}{2}(x-$						

frag replaceme

- [SQA] 36. The diagram shows a sketch of the graph of $y = x^3 3x^2 + 2x$.
 - (*a*) Find the equation of the tangent to this curve at the point where x = 1. PSfrag replacements
 - (*b*) The tangent at the point (2, 0) has equation y = 2x 4. Find the coordinates of the point where this tangent meets the curve again.

5
9

5

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	5	С	CN	C5	x + y = 1	2000 P2 Q1
<i>(b)</i>	5	С	CN	A23, A22, A21	(-1, -6)	
•2 •3 •4 •5 •6 •7 •8 •9	ss: knc pd: diff ss: knc is: knc ic: stat ss: equ pd: arra ss: knc pd: pro ic: inte	erentiate ow that g ow that g e equ. o ate equa ange in s ow how cess	e correc gradient /-coord f line ations standard	tly f = f'(1) f = f(1) d form	• ¹ $y' = \dots$ • ² $3x^2 - 6x + 2$ • ³ $y'(1) = -1$ • ⁴ $y(1) = 0$ • ⁵ $y - 0 = -1(x - 1)$ • ⁶ $2x - 4 = x^3 - 3x^2 + 2x$ • ⁷ $x^3 - 3x^2 + 4 = 0$ … 1 -3 0 • ⁸ … • ⁹ identify $x = -1$ from wo • ¹⁰ $(-1, -6)$	· · ·

[END OF WRITTEN QUESTIONS]

