Quadratic Theory

1. Solve the following quadratic inequalities:
(a) $25-x^{2} \leq 0$
(b) $4+5 x+x^{2}>0$
(c) $4 x^{2}-24 x+35<0$
2. Solve the following quadratic equations, by first writing in the form $a(x+b)^{2}+c$:
(a) $x^{2}+4 x+3=0$
(b) $x^{2}+6 x+1=0$
(c) $2 x^{2}-5 x-33=0$
3. An equation is given as $t x+3 t+\frac{t+5}{x}=0 \quad$ where $\quad x \neq 0$ and $t \neq 0$.
(a) Show clearly that this equation can be written in the form

$$
t x^{2}+3 t x+t+5=0 .
$$

(b) Hence find the values of t which would result in the above equation having real roots.
4. Find the values of p for which the quadratics equation in $\mathrm{x}, x^{2}-2 x+21=2 p(3 x-7)$ have equal roots
5. For what values of t does the equation $x^{2}+(t-1) x=2 t+1$ have no real roots ?
6. The famous Gateway Arch in the United States is parabolic in shape.

Figure 2 shows a rough sketch of the arch relative to a set of rectangular axes.

Figure 1

Figure 2

From figure 2 establish the equation connecting h and x.
7. Show that the line with equation $4 x-y-1=0$ is a tangent to the parabola with equation $y=x^{2}+6 x$
8. Find the equations of the tangents to the parabola $y=x^{2}+9$ at the point $(0,8)$

