Recurrence Rel. Past Papers Unit 1 Outcome 4

Multiple Choice Questions

Each correct answer in this section is worth two marks.

- 1. A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{4}u_n + 8$ with $u_0 = 32$. Evaluate u_2 .
 - A. 10
 - B. 12
 - C. 16
 - D. 32

1 4			21000	Calculator	Content	Jource
1.4	С	0.83	0.35	NC	A11	HSN 137
1						
$\frac{1}{4}u_{0} + 8$	$=\frac{1}{4}x$	(32+8	= 8+	-8 = 16.		
= = 11 + 8	$=\frac{1}{2}$	x 16 + 8	= 4+	-8 = 12	Option B	7
	$=\frac{1}{4}u_{0}+8$ $=\frac{1}{4}u_{1}+8$	$= \frac{1}{4}u_{0} + 8 = \frac{1}{4}y_{0}$ $= \frac{1}{4}u_{1} + 8 = \frac{1}{4}y_{0}$	$= \frac{1}{4}u_0 + 8 = \frac{1}{4}x 32 + 8$ $= \frac{1}{4}u_1 + 8 = \frac{1}{4}x 16 + 8$	$= \frac{1}{4}u_0 + 8 = \frac{1}{4}x32 + 8 = 8 + \frac{1}{4}u_0 + 8 = \frac{1}{4}x16 + 8 = 4 + \frac{1}{4}x16 + \frac{1}{$	$\frac{1}{4}u_{0} + 8 = \frac{1}{4}x32 + 8 = 8 + 8 = 16.$ = $\frac{1}{4}u_{1} + 8 = \frac{1}{4}x16 + 8 = 4 + 8 = 12.$	$\frac{1}{4}u_{0} + 8 = \frac{1}{4}x32 + 8 = 8 + 8 = 16.$ = $\frac{1}{4}u_{1} + 8 = \frac{1}{4}x16 + 8 = 4 + 8 = 12.$ Option B

 $_{y}^{x}$ Quest

- 2. A sequence is defined by the recurrence relation $u_{n+1} = \frac{2}{5}u_n + 6$ with $u_0 = -10$. What is the limit of the sequence?
 - A. 10
 - B. $\frac{2}{5}$
 - C. $-\frac{2}{25}$
 - D. -30

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
Α	1.4	С	0.94	0.14	NC	A13	HSN 088

[END OF MULTIPLE CHOICE QUESTIONS]

Higher Mathematics

Written Questions

[SQA]

frag replaceme

3. Two sequences are defined by these recurrence relations:

$$u_{n+1} = 3u_n - 0.4$$
 with $u_0 = 1$, $v_{n+1} = 0.3v_n + 4$ with $v_0 = 1$

(a) Explain why only one of these sequences approaches a limit as $n \to \infty$.

frag replacements (b) Find algebraically the exact value of the limit.

(c) For the other sequence, find

х

y

уL

- (i) the smallest value of n for which the n^{th} term exceeds 1000, and
- (ii) the value of that term.

nart marks		17.27	no	n-calc	-calc calc		cal	c neut	Content Reference :	14
part	marks	Unit	C	A/B	C	A/B	C	A/B	Main Additional	1.4
(a) (b)	1 2	1.4 1.4			1 2				1.4.4 1.4.5	Source
(c)	2	1.4	· · ·	I I		2		I I	1.4.3	199011 qua
			<u>.</u>							1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1
	• ¹	Only V_n has e.g. use L	s a limi = aL +	t because	e -1<	0.3<1		s,	⁴ evaluate enough terms	to exceed 1000

[SQA] 4. A sequence is defined by the recurrence relation $u_n = 0.9u_{n-1} + 2$, $u_1 = 3$.

- (*a*) Calculate the value of u_2 .
- (*b*) What is the smallest value of *n* for which $u_n > 10$?
- (*c*) Find the limit of this sequence as $n \to \infty$.

		101102-01-014	TTatt	no	n-calc	С	alc	cal	c neut	Content Reference :	14
	part	marks	Unit	C	A/B	Ç.	A/B	С	A/B	Main Additional	1.7
	(a) (b)	1	1.4			1				1.4.2 1.4.3	Source
	(c)	2	1.4			2				1.4.5	1994 P1 qu.9
frag replacements		• ¹ • ²	4·7 7								
О		•3	$l = 0 \cdot 9l +$	2		OR		•3	l="	$\frac{b}{1-a}'' = \frac{2}{1-0.9}$	
<i>x</i>		•4	20					•4	20		

replacements

O *x y* **bsn**.uk.net y^{x} Quest

1

2

2

1

1

- [SQA] 5. A sequence is defined by the recurrence relation $u_{n+1} = 0.3u_n + 5$ with first term u_1 .
 - (*a*) Explain why this sequence has a limit as *n* tends to infinity.
 - (*b*) Find the **exact** value of this limit.

0.99972	CONSIGNATION OF THE OWNER OWNER OF THE OWNER OWNE	Unit	no	n-calc	C	alc	cal	c neut	Content Reference :	1.4
part	marks	Unit	C	A/B	С	A/B	C	A/B	Main Additional	
(a)	1	1.4					1	SECONDATE OF 10	1.4.4	Source
(b)	2	1.4					2		1.4.5	1996 P1 qu.11
	•1 -	-1<0.3<	1							
	_1	1-0.2-	1							
	• ¹ -	$-1 < 0 \cdot 3 < L = 0 \cdot 3L + 1 \cdot 1$	1 • 5							
	• ¹ -	$-1 < 0 \cdot 3 < L = 0 \cdot 3L + Dr L = \frac{b}{1-c}$	$\frac{1}{5} = \frac{5}{1-6}$	13						
	• ¹ - • ² 1	$-1 < 0 \cdot 3 <$ $L = 0 \cdot 3L +$ $Dr L = \frac{b}{1-a}$ $r = \frac{50}{2}$	$\frac{1}{a} = \frac{5}{1-0}$	13						

frag replacements

[SQA] 6. Two sequences are generated by the recurrence relations $u_{n+1} = au_n + 10$ and $v_{n+1} = a^2v_n + 16$.

The two sequences approach the same limit as $n \to \infty$.

Determine the value of *a* and evaluate the limit.

Part	Marks	Level	Calc.	Content	Answer	U1 OC4
	4	С	NC	A13	$a = \frac{3}{5}, L = 25$	2000 P1 Q5
	1	A/B	NC	A12		
•1 •2 •3 •4 •5	ss: knc pd: pro pd: pro ic: inte pd: pro	w how cess cess erpret co cess	to find l eff. of <i>u</i>	imit ^I n	• ¹ $L = aL + 10$ or $L = a$ $L = \frac{b}{1-a}$ • ² $L = \frac{10}{1-a}$ or $L = \frac{16}{1-a^2}$ • ³ $\frac{10}{1-a}$ or $\frac{16}{1-a^2}$ • ⁴ $10a^2 - 16a + 6 = 0$ • ⁵ $a = \frac{3}{5}$ and $L = 25$	$e^{2}L + 16$ or

replacements

1 2

Higher Mathematics

Ο

frag replacements Two sequences are defined by the recurrence relations

 $u_{n+1} = 0 \cdot 2u_n + p, \quad u_0 = 1$

 $v_{n+1} = 0 \cdot 6v_n + q, \quad v_0 = 1.$

 $\begin{array}{c} x \\ y \\ \end{array}$ If both sequences have the same limit, express p in terms of q.

	—	1000000000000	11.21	no	n-calc	C	alc	cal	c neut	Content Reference :	1.4
	part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	
		3	1.4						3	145	Source 1999 P1 qu.18
	Γ	• ¹ ·	L = 0.2L +	p, L	= 0.6L +	q" or	use "I	$=\frac{b}{1-a}$	v	- 10	
rag replacements		• ² 7	$\frac{p}{0.8}$ and $\frac{q}{0.8}$	4							
О		•3 1	$p = \frac{0.8q}{0.4}$ o	requi	valent e	xpress	sion for	p			
x V		5	1000						-		

and

frag reparties On the day of his thirteenth birthday, a boy is given a sum of money to invest and instructions not to withdraw any money until after his eighteenth birthday. The money is invested and compound O interest of 9% per annum is added each following birthday. By what percentage will the investment

x have increased when he withdraws his money just after his eighteenth birthday? y

marks 3		C	A/B	C	A/B	C	1 . (D		
3	5.5		************************************		A/B	C	A/B	Main Additional	
	1.4			3				1.4.3	Source 1991 P1 qu.11
• ¹ 1.	.09		1				-210		and the
• ² fo	or using (.)5							
• ³ a	pprox. 54	%							
	• ¹ 1. • ² fo • ³ a	 ¹ 1.09 ² for using (. ³ approx. 54 	 ¹ 1.09 ² for using ()⁵ ³ approx. 54% 	 ¹ 1.09 ² for using ()⁵ ³ approx. 54% 	 ¹ 1.09 ² for using ()⁵ ³ approx. 54% 	 ¹ 1.09 ² for using ()⁵ ³ approx. 54% 	 ¹ 1.09 ² for using ()⁵ ³ approx. 54% 	 ¹ 1.09 ² for using ()⁵ ³ approx. 54% 	 ¹ 1.09 ² for using ()⁵ ³ approx. 54%

replacements

3

Higher Mathematics

$$\frac{PStrag \text{ replacements}}{O}$$

(4)

(6)

[SQA] 9. (a) At 12 noon a hospital patient is given a pill containing 50 units of antibiotic.

By 1 pm the number of units in the patient's body has dropped by 12%. By 2 pm a further 12% of the units remaining in the body at 1 pm is lost. If this fall-off rate is maintained, find the number of units of antibiotic remaining at 6 pm.

- (b) A doctor considers prescribing a course of treatment which involves a patient taking one of these pills every 6 hours over a long period of time. The doctor knows that mopre than 100 units of this antibiotic in the body is regarded as too dangerous.
- frag replacements
 - O Should the doctor prescribe this course of treatment?
 - *x* Give reasons for your answer.
 - y

(a) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source 191 Paper : Qu. 9
(a) \cdot^{1} use 0.88 or 88% \cdot^{2} $n = 6$ \cdot^{3} $u_{6} = 50 \times 0.88^{6}$ \cdot^{4} 23.22 (b) \cdot^{5} adding 50 \cdot^{6} $a \cos^{6}$ $a \cos^{6}$	
$ \begin{array}{c} \bullet^{2} & n = 6 \\ \bullet^{3} & u_{6} = 50 \times 0.88^{6} \\ \bullet^{4} & 23.22 \end{array} $ $ \begin{array}{c} \text{(b)} & \bullet^{5} & \text{adding 50} \\ & 6 & \dots & 0.96^{6} \\ & & & 0.96^{6} \\ \end{array} $	
• $u_6 = 50 \times 0.88^6$ • $u_6 = 50 \times 0.88^6$ • $u_6 = 23.22$ (b) • $u_6 = 300^6$ = 0.00^6 = 50	
• 4 23.22 (b) 5 adding 50	
(b) \bullet^5 adding 50	
6 0.006 50	
• $u_{n+1} = 0.88 \ u_n + 50$	
$-1 < 0.88^6$ (or 0.4644) < 1 so limit exists	
• ⁸ $L = \frac{50}{1 - 0.88^6}$	
• ⁹ 93.4	
• ¹⁰ 93.4 < 100 so safe to continue	

frag replacements

(3)

(5)

[SQA] 10. The extract below is taken from the "OIL RIG NEWS".

RARE ILLNESS STRIKES RIG Storm prevents delivery of medicine

By noon on Tuesday 20th December 1988 50 of our oil rig personnel were laid low by a mystery illness. Our resident medical officer is expressing concern because the number of personnel affected is increasing each day by 8% of the previous day's total.

- (*a*) If the daily rate of increase remained at 8% of the previous day's total, how many personnel were affected by noon on Sunday 25th December 1988?
- (b) An improvement in the weather conditions allowed a team of medics to fly out to the rig on the morning of Tuesday 27th December 1988. At noon on that Tuesday, all personnel were innoculated and no new cases of the illness arose. Within the next 24 hours, 21% of those who had been affected had recovered.

frag replacements

- If the daily rate of recovery of 21% of the previous day's total was maintained,Ohow many personnel were still affected by the illness at noon on Saturday 31st
- x December 1988?

y

	000000	cannes and		no	n-calc	C	alc	cal	c neut	Content Reference :	
	part	marks	Unit	C	A/B	С	A/B	C	A/B	Main Additional	1.4
	(a) (b)	3 5	1.4 1.4			3 5				1.4.2 1.4.2	Source 1990 Paper 2 Qu. 3
	(a)		$n = 1.08^{n} u$ $5 = 1.08^{5} c$ 3 or 74	40 × 50							
rag replacements	(b)	• ⁴ u • ⁵ u • ⁶ v • ⁷ v	$_{7} = 1.08^{7}$ $_{7} = 85$ or $_{n} = 0.79^{n}$ $_{4} = 33$ or pr consist	× 50 • 86 • 34 • 34	unding						
0			or consist	ciii io	unung						
x											

replacements

y

Questions marked '[SQA]' ⓒ SQA All others ⓒ Higher Still Notes

	PStrag replacemer	nts	
		0	
Highe	er Mathematics	y^{x} Quest	
[SQA] 11.	Secret Agent 004 has been captured and his captors are giving him a 25 milligram dose of a truth serum every 4 hours. 15% of the truth serum present in his body is lost every hour.		
	(a) Calculate how many milligrams of serum remain in his body after 4 hours (that is immediately before the second dose is given).		(3)
	(b) It is known that the level of serum in the body has to be continuously above 20 milligrams before the victim starts to confess. Find how many doses are needed before the captors should begin their interrogation.		(3)
	(c) Let u_n be the amount of serum (in milligrams) in his body just after his n^{th} dose. Show that $u_{n+1} = 0.522u_n + 25$.		(1)
frag replacements	(<i>d</i>) It is also known that 55 milligrams of this serum in the body will prove fatal, and the captors wish to keep Agent 004 alive. Is there any maximum length of time for which they can continue to administer		
x y	this serum and still keep him alive ?		(4)

mont	nart marks	Linit	no	n-calc	С	alc	ca	lc neut	Content Reference :	1 12 2
part	marks	Unit	C	A/B	C	A/B	С	A/B	Main Additional	1.4
(a)	3	1.4			3				1.4.1	Source
(b)	3	1.4			3				1.4.1	1993 Paper 2
(c)	1	1.4			1				1.4.3	Qu.8
(d)	4	1.4			3	1			1.4.4, 1.4.5	

	_	_	and the second	
	(a)	•1	strategy for each hour (e.g. using 0-85)	
	-	•2	using strategy 4 times (e.g. (0.85 ⁴)	
	3	•3	13-05	
	(b)	•4	apply a correct dose strategy	
	1001000	•5	a relevant sequence e.g. 13-05, 19-86, 23-4,	
			or 25, 38.05, 44.9, 48.4	
		•6	3 doses	
	(c)	•7	valid explanation i.e. $(0.85)^4 = 0.522$ explicitly stated	
frag replacements	(d)	•8	statement that limit exists because $(0.85)^4 < 1$	
		•9	: $l = 0.522l + 25$ or using $l = \frac{b}{1-a}$	
0		.10	1=52.3	
<i>x</i>		•11	52.3 < 55 so no maximum length of time	
y	<u> </u>	-		- 10 - 1 2

0 y^{x} **hsn**.uk.net

		PStrag replacem	nents
			O
	Highe	er Mathematics	y Quest
[SQA]	12.	 The sum of £1000 is placed in an investment account on January 1st and, thereafter, £100 is placed in the account on the first day of each month. Interest at the rate of 0.5% per month is credited to the account on the last day of each month. This interest is calculated on the amount in the account on the first day of the month. 	
		(a) How much is in the account on June 30th ?	(4)
		(b) On what date does the account first exceed £2000?	(2)
frag replaceme	ents		
	Ο	(c) Find a recurrence relation which describes the amount in the	19-20-04
	x	account, explaining your notation carefully.	(3)

y

	marker	Unit	no	non-calc calc			cal	c neut	Content Reference :	14		
part	marks	Umt	C	A/B	C	A/B	С	A/B	Main Additional	1.1		
(a)	4	1.4			4				1.4.1	Source		
(b)	2	1.4			2				1.4.1	1997 Paper		
(c)	3	1.4			3				1.4.3	Qu.3		
(a)	1	1 005										
	2	C1000			05							
	•	21000 +	intere	st = 10	05							
	•"	£1005 + £	100+	interest	=£111	10.525						
	•4	£1537.93										
(b)	•5	complete	anotl	ner mon	th							
	•6	£2073.94	on No	ov.1st								
(c)	•7 •8 •9	$u_{n+1} = 1.$ $u_n = among u_0 = 1000$	005 <i>u_n</i> ount o) (on ⁻	+ 100 n 1st da Ist Janus	y of ca ary)	ach moi	nth					

frag replacement

0 y^{x} **b**hsn.uk.net

		PSfrag replaceme	nts	
			0	
er Ma	thema	atics	y^{x} Quest	
Ag	arden	er feeds her trees weekly with "Bioforce, the wonder plant food".		
It is abo	knov ut 259	vn that in a week the amount of plant food in the tree falls by %.		
(a)	The	trees contain no Bioforce initially and the gardener applies 1g of		
	Bio	force to each tree every Saturday. Bioforce is only effective when the	ere	
	is c	ontinuously more than 2g of it in the tree. Calculate how many weekl	ly	
	feed	ds will be necessary before the Bioforce becomes effective.		(3)
(b)	(i)	Write down a recurrence relation for the amount of plant food in th	e	
		tree immediately after feeding.		(1)

frag replacements

[SQA]

- (ii) If the level of Bioforce in the tree exceeds 5g, it will cause leaf burn. Is it safe to continue feeding the trees at this rate indefinitely?
- x y

Ο

Higher

13.

	-	There	no	n-calc	C	alc	cal	c neut	Content Reference :	14	
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional		
(a)	3	1.4			3				1.4.1	Source	
(b)	1	1,4			1				1.4.3	1998 raper 2	
(c)	4	1.4			4				1.4.4, 1.4.5	Qu. 8	
(a)	•1	75% or ea	nuivale	nt							
	•2	0.75, 1.31	and	1.73							
	•3	2.05 and	"after	fourth f	eed"						
(<i>b</i>)	•4	$u_{n+1}=0.2$	75u _n +	1							
(c)	5	1 + 0 75	-1 -0		aa haa	a limit					
(-)	6	-100/0	<1 50	sequen	ce nas	a muu					
		e.g. $L =$	0.75L+	-1							
	•	L = 4									
	.8	Safe to co	ontinue	5							
	•7 •8	L = 4 Safe to co	ontinue	e							

frag replacement

replacements

0 y **bsn**.uk.net

(4)

[SQA] 14. Some environmentalists are concerned that the presence of chemical nitrates in drinking water presents a threat to health.

The World Health Organisation recommends an upper limit of 50 milligrams per litre (mg/l) for nitrates in drinking water, although it regards levels up to 100 mg/l as safe.

A sub-committee of a Local Water Authority is considering a proposal affecting a small loch which supplies a nearby town with drinking water. The proposal is that a local factory be permitted to make a once-a-week discharge of effluent into the loch, provided that a cleaning treatment of the loch is carried out before each discharge of effluent.

The Water Engineer has presented the following data:

- 1. The present nitrate level in the loch is 20 mg/l.
- 2. The cleaning treatment removes 55% of the nitrates from the loch.
- 3. Each discharge of effluent will result in an addition of 26 mg/l to the nitrate presence in the loch.

frag replacements

and advises the sub-committee that the proposal presents no long-term danger from nitrates to the drinking water supply.

- O (a) Show the calculations you would use to check the engineer's advice.
- $\begin{array}{l} x \\ y \end{array}$ (b) Is the engineer's advice acceptable?

part marks		non-calc		calc		cal	c neut	Content Reference :	14	
	Unit	C	A/B	C	A/B	C	A/B	Main Additional	1.4	
(a)	5	1.4			5				1.4.1, 1.4.5	Source 1989 Paper 2
(b) 1	0.1			1				0.1	Qu. 6	

(a) $\cdot^{1} u_{0} = 20$ $\cdot^{2} u_{1} = 35$

- •³ three further values eg 41.75, 44.78, 46.15
- •4 46.76, 47.04, 47.17 looks like approaching a limit
- •⁵ five more lead to 47.27' something' \Rightarrow limit = 47.27
- (b) •⁶ 47.27 < 50 so level safe

frag replacements

Oxy

replacements

Questions marked '[SQA]' © SQA All others © Higher Still Notes (5) (1)

2

4

- [SQA] 15. On the first day of March, a bank loans a man £2500 at a fixed rate of interest of 1.5% per month. This interest is added on the last day of each month and is calculated on the amount due on the first day of the month. He agrees to make repayments on the first day of each subsequent month. Each repayment is £300 except for the smaller final amount which will pay off the loan.
 - (*a*) The amount that he owes at the start of each month is taken to be the amount still owing just after the monthly repayment has been made.

Let u_n and u_{n+1} represent the amounts that he owes at the start of two successive months. Write down a recurrence relation involving u_{n+1} and u_n .

(*b*) Find the date and the amount of the final payment.

Part	Marks	Level	Calc.	Content	Answer	U1 OC4
(<i>a</i>)	2	С	CN	A10, A14	$u_{n+1} = 1.015u_n - 300, u_0 = 2$	5 20 001 P2 Q3
(b)	4	С	CR	A11, A14	1 December, £290.68	
•1 •2 •3 •4 •5 •6	ic: inte ic: stat ss: use pd: pro- ic: star pd: pro-	rpret 1.{ e the rec recurren cess t final d cess fina	5% currence nce rela ate 1l paym	e relation tion ent	 1 1.015 stated or implied by (b) 2 u_{n+1} = 1.015u_n - 300 value (e.g. u₀ = 2500) stated o the start of (b) 3 u₁ i.e. £2237.50 4 u₂ and u₃ i.e. £1971.06, £1 5 £286.38 6 £290.68 for December pay) the start of and initial or implied by 700.63 7ment

- [SQA] 16. A man decides to plant a number of fast-growing trees as a boundary between his property and the property of his next door neighbour. He has been warned, however, by the local garden centre that, during any year, the trees are expected to increase in height by 0.5 metres. In response to this warning he decides to trim 20% off the height of the trees at the start of any year.
 - (*a*) If he adopts the "20% pruning policy", to what height will he expect the trees to grow in the long run?
 - (*b*) His neighbour is concerned that the trees are growing at an alarming rate and wants assurances that the trees will grow no taller than 2 metres. What is the minimum percentage that the trees will need to be trimmed each year so as to meet this condition.

Part	Marks	Level	Calc.	Content	Answer	U1 OC4
(<i>a</i>)	3	С	CN	A13, A14	2.5 metres	2002 P2 Q4
(b)	3	С	CN	A12, A13	trim 25%	
	ic: inte ss: stra pd: pro ss: reve pd: pro ic: inte	erpret the tegy for cess limiterse stra cess erpret sca	e decay limit it tegy for ale facto	factor e limit or	• ¹ 0.8 stated or implied • ² e.g. $l = 0.8l + 0.5$ or $l = \frac{1}{1}$ • ³ -1 < 0.8 < 1 so $l = 2.5$ m • ⁴ 2 = 2m + 0.5 • ⁵ m = 0.75 • ⁶ trim 25%	$\frac{0.5}{-0.8}$ netres

replacements

3

[SQA] 17. Biologists calculate that when the concentration of a particular chemical in a sea loch reaches 5 milligrams per litre (mg/l) the level of pollution endangers the life of the fish.

A factory wishes to release waste containing this chemical into the loch. It is claimed that the discharge will not endanger the fish.

The Local Authority is supplied with the following information:

- 1. The loch contains none of this chemical at present.
- 2. The factory manager has applied to discharge effluent once per week which will result in an increase in concentration of 2.5 mg/l of the chemical in the loch.
- 3. The natural tidal action will remove 40% of the chemical from the loch every week.
- (a) Show that this level of discharge would result in fish being endangered.

frag replacements

y

When this result is announced, the company agrees to install a cleaning process that reduces the concentration of chemical released into the loch by 30%.

- $\stackrel{O}{x}$ (b) Show the calculations you would use to check this revised application.
 - Should the Local Authority grant permission ?

		a sector	T Too St.	no	n-calc	C	alc	cal	c neut	Conte	nt Reference :	144
	part r	narks	Unit	С	A/B	C	A/B	C	A/B	Main	Additional	1.4
	(a) (b)	3 5	1.4 1.4			3 5				1.4.3 1.4.3,	1.4.5	Source 1992 Paper 2 Qu.3
	(a) • •	$1 0.6 = \frac{1}{2} u_{n+1}$ 3 con	stated / in $_1 = 0.6u_n$ nmunicat	nplied + 2.5 ion: ie	6.25 ⇒	dang	er					
	(b) • • •	⁴ 0.7 $\frac{5}{2.8}$, ⁶ u_{n+} ⁷ lim ⁸ con	x 2.5 = 1.3 3.43, 3.80 $x_1 = 0.6u_n$ it = 4.375 municat	75)8 + 1.75 ion: ie	4.375 =	s allo	w/disa	llow				
frag replacements O x												

replacements

Y

(5)

(3)

Ο

 $_{y}^{x}$ Quest

Higher Mathematics

[SQA] 18. Trees are sprayed weekly with the pesticide, KILLPEST, whose manufacturers claim it will destroy 65% of all pests. Between the weekly sprayings it is estimated that 500 new pests invade the trees. A new pesticide, PESTKILL, comes onto the market. The manufacturers

frag replacements claim that it will destroy 85% of existing pests but it is estimated that 650

- O new pests per week will invade the trees.
- x Which pesticide will be more effective in the long term ?

y

	-	manles	Linit	non-calc		C	alc	cal	c neut	Content Reference :		1.4
	part	marks	Unit	C	A/B	С	A/B	С	A/B	Main	Additional	4.1
	•	7	1.4			7				1.4.3,	4.3, 1.4.4, 1.4.5	1995 Paper 2
	(-)	• ¹ 0·3	5 stated	or imp	plied							1
		• $0 \cdot 3$ • $0 \cdot 1$ • $0 \cdot 1$	$5u_n + 500$ 5 stated $5u_n + 650$) or imj	olied							
		• ⁵ $l = l$ • ⁶ lim	al + b its = 769	<i>or</i> and 7	limit = 65	$\frac{b}{1-a}\cdots$						
		• ⁷ Lin and	uts are va Pestkill	alid sin is mor	nce a < re effecti	1 in bo ve	oth case	s				
rag replacements												
0												
x y						_		_				

[END OF WRITTEN QUESTIONS]

replacements

(7)