Sequences \& Recurrence Relations 1 (answers)

1. (a) £373.85
(b) 16 years $(15 \cdot 75)$
2. (a) $28,26 \cdot 4,25 \cdot 12,24 \cdot 096$
(b) because $-1<a<1$ (or equivalent)
(c) \quad Limit $=20$
3. (a) $k=1 / 2 \quad, \quad c=-20$
(b) $\quad U_{4}=-33.75$
4. (a) approx. 10 hours (5×2 hours) this low value is reached before adding 12
(b) No sequence has a limit of 24 , however this is an upper value i.e. lower limit is 12 (below 12•3)
5. (a) $60 \cdot 64$ units
(b) After 3 hours the lower level climbs above 100 units \qquad this is o.k.

After a number of calculations the limit formula can be applied and the limit found (this is an upper limit since b is involved).

Limit $=254$ units \qquad o.k. since well below 300 units.

Conclusion : at any time antibiotic in bloodstream will be between 154 and 254 units. This is ideal.

Sequences \& Recurrence Relations 2 (answers)

1.

(a) $k=0.8 \quad$ and
$c=6$
(b) $E=21$
2.
(a) Explanation
i.e. $-1<a<1$
(b) $L=15$
(c) $n=3$
3.
(a) $U_{2}=a(4 a-8)-8=4 a^{2}-8 a-8$
(b) $\therefore a=6$
(c) $S_{3}=16+88+520=624$
4.
(a) $72 \cdot 8$ units
(b) 16 months
.. (pupils must know to look at low value, i.e.... before adding 8) (4×4)

