Maths Revision Booklet

Name:

After each exercise check your answers at the back of this booklet

Exercise	1	2	3	4	5	6	7	8	9	10
Score										

| Sheet 2 | Evaluate $14.3+8.2 \times 30$ |
| :--- | :--- | :--- | :--- |

| Sheet 5 |
| :--- | :--- | :--- | :--- |

Sheet 6

Mark:

$$
\text { Find } \frac{1}{2}\left(1 \frac{2}{7}-\frac{5}{9}\right)
$$

A straight line with gradien
passes through $(4,8)$ and (2
Find the value of a.

4 | Change the subject of the |
| :---: |
| formula to $\mathrm{W}:$ |
| $5 \mathrm{EW}-J^{2}=\frac{4}{L}$ |

$\mathbf{6}$	Can a cylinder with height 10 cm and diameter 8cm hold 500 ml of water? Explain your answer.	
$\mathbf{7}$	Factorise fully: $10 x^{2}-50 \mathrm{x}-240$	
$\mathbf{8}$	My total bill for fixing my car included 8% tax. If the bill was £324, what was the bill before tax?	
$\mathbf{9}$	A triangle has sides $12 \mathrm{~cm}, 14 \mathrm{~cm}$ and 21 cm . Find the sizes of its biggest angle.	
$\mathbf{1 0}$	Sketch y $=(2 x-5)(x+1.5)$ Label the intercepts and turning point.	

Sheet 7 M	
1 Without a calculator find $\frac{4}{7}$ to three decimal places.	
2 What is the equation of this line?	
3 Find $27^{\frac{2}{3}}$	
4 Solve $3 x+1=\frac{x-5}{2}$	
 What is the value of a in this graph $y=\cos \left(a x^{\circ}\right)$	
Show that the standard deviation of $1,1,1,2,5$ is $\sqrt{3}$ and write down the s.d. of $101,101,101,102,105$.	
7 Multiply out and simplify: $3\left(x^{2}-5 x+1\right)-2 x(x-4)$	
8 If these shapes have the same height which has greater volume: a cone with radius 3 cm or a cylinder with radius 2 cm ?	
9 Here's the Bermuda Triangle (Bermuda-Miami-Puerto Rico). Find angle BMP	
10 Write down the axis of symmetry and the coordinates of the turning point of $y=(x-6)^{2}+2$	

Sheet 8 Mar	rk:
Without a calculator find 35% of $£ 84.50$	
2 A straight line is given by $y=m x+c$. Sketch this to illustrate a possible graph when $m>0$ and $c<0$.	
3 Simplify $\frac{a b^{6}}{a^{2} b^{3}}$	
4 Write $\frac{3}{a}+\frac{5}{a-1}$ as a single fraction	
$\begin{gathered} \text { Solve } 4 \sin x^{\circ}=2 \sin x^{\circ}+1 \\ \text { for } 0 \leq x \leq 360 \end{gathered}$	
6 Solve $3 x^{2}+2 x=10$, giving your answer to two decimal places.	
7 Factorise 10.2²-9.8². Can you use your answer to see what the value of this expression is?	
The big jar of marmalade (450g) has 12.5% more than the standard one. What's in the standard one?	
Plot the point A $(-5,2)$ on a coordinate diagram. How far is it from A to the origin?	
10 Here is the graph of $y=(x-a)^{2}+b$ Find a, b and use your equation to find c.	

Sheet 9

Mark:

Find the mean of $\frac{3}{5}, \frac{5}{8}, \frac{3}{4}, \frac{1}{2}$.
2 Find the gradient and y-intercept for this straight line: $6 x+2 y=5$

7
Factorise fully $2 y^{2}-30 y-68$

8 A patient gets 250 mm of a drug at $3 p m$. Every hour the amount of blood decreases by 20\%. How much is in the blood at 6pm?

Find the length of SW.

10
Describe the types of roots this quadratic has: $y=3 x^{2}+2 x$

1 Jamie is baking cakes for a party.
Each cake needs $\frac{2}{5}$ block of butter. If he has 7 blocks of butter how many cakes can he make?

Find the equation of a straight line between $(-8,3)$ and $(-4,-5)$.
$3 \quad$ Express $p^{3}\left(p^{-3}-\sqrt{p}\right)$ in simplest form.
4
Solve for $x: \frac{3(x-1)}{5}=\frac{x+1}{2}$
5
Solve $\sin ^{2} x=\frac{1}{4}$ for $0 \leq x \leq 360$

Summary
Keep a record of the questions that you are getting right.
Use this to identify the areas where you are struggling a bit.
Ask your teacher for help with these areas!

10: Quadratics (Solving, Graphs)										
9: Triangle Rules (Pythagoras, Sine Rule, Cosine Rule, Area of Triangle)										
8: Percentages (including compound interest, appreciation, depreciation, working backwards)										
7: Factorisation and Multiplying Out Brackets										
6: Using formula (including standard deviation, quadratic formula and volumes)										
5: Trigonometric graphs and equations										
4: Algebra (including changing the subject of a formula, solving equations and inequations)										
3: Surds and Indices										
2: Equation of a straight line										
1: Basic calculations (including fractions and BODMAS)										

HW5 1. $f(-2)=-2$ 2. Graph C 3. $5 \sqrt{2}$ 4. $x \geq 18$ 5. $x=26.6$ 6. \quad s.d. $=7.37$ 7. $3 x^{3}-14 x^{2}+7 x+4$ 8. $1,795,728,158$ 9. $3 \sqrt{2}$ 10. $b^{2}-4 a c<0$ so no real roots	HW6 1. $\frac{23}{63}$ 2. $a=-2$ 3. $3 k^{3}+2 k^{-2}-k^{\frac{5}{2}}=3 k^{3}+\frac{2}{k^{2}}-\sqrt{k^{5}}$ 4. $\quad W=\frac{1}{5}\left(\frac{4}{L}+J^{2}\right)$ 5. $a=5, b=3$ 6. Yes= it holds 502.4 ml (2.4 ml more) 7. $x=8, x=-3$ 8. £300 9. 1070 10.
HW7 1. 0.571 2. $y=4 x-3$ 3. 9 4. $-\frac{7}{5}$ 5. $a=4$ 6. show that s.d. $=\sqrt{3}$. New $\bar{x}=102, s d=\sqrt{3}$ 7. $x^{2}-7 x+3$ 8. Cylinder (its volume is $4 \pi \mathrm{~h}$ compared to $3 \pi \mathrm{~h}$) 9. Angle $\mathrm{BMP}=57.8^{\circ}$ 10. symmetry $x=6$ and $\operatorname{TP}(6,2)$	HW8 1. £29.58 2. 3. $\frac{b^{3}}{a}$ 4. $\frac{8 a-3}{a(a-1)}$ 5. $x=30,150$ 6. $x=1.1,-1.77$ 7. 8 8. 400 9. $\sqrt{29}$ 10. $\mathrm{c}=5$

HW9	HW10
1. 99	
1. $\overline{160}$	1. 17 cakes
2. $m=-3$ and $c=2.5$	2. $y=-2 x-13$
3. $6 \sqrt{2}$	3. $1-p^{\frac{7}{2}}$
4. $h=\frac{2 A}{a+b}$	4. $x=11$
5. $\begin{gathered}a+b \\ \text { 5. }\end{gathered}$	5. $x=30,150,210,330$
5. $\quad P(90,1)$ and $Q(53.1,0)$ 6. 4 Ml have higher marks on average.	6. $\mathrm{h}=1.2$
6. 4 MI have higher marks on average. 4 Ml have less consistent marks.	7. $x^{3}+6 x^{2}+12 x+8$
7. $2(y-17)(y+2)$	8. £127.65
8. 128 mm	9. 42.66 cm
9. $\quad 6.64 \mathrm{~cm}$	10. $x=2$
10. $b^{2}-4 \mathrm{ac}>0$ so two real (distinct) roots	

FORMULAE LIST

The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$
Sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine rule: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A \quad$ or $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: \quad Area $=\frac{1}{2} a b \sin C$

Volume of a sphere: Volume $=\frac{4}{3} \pi t^{3}$

Volume of a cone: \quad Volume $=\frac{1}{3} \pi \pi^{2} h$

Volume of a pyramid: \quad Volume $=\frac{1}{3} \mathrm{Ah}$
Standard deviation: $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}}$, where n is the sample size.

