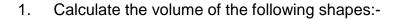
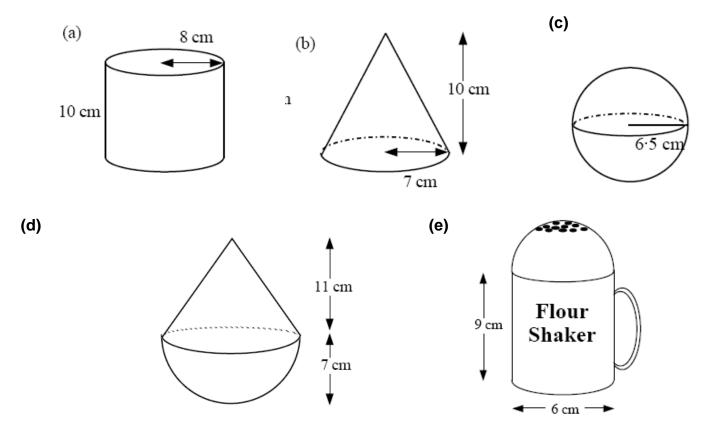
Solutions Included

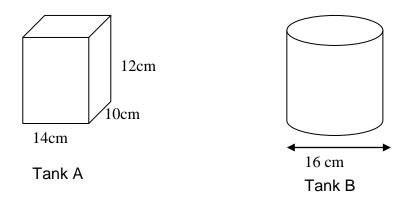
Maths Revision Booklet

Page Contents

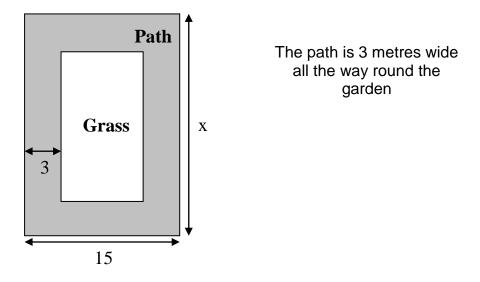

- 2 Percentages
- 2 Volume
- 3 Expanding Brackets
- 4 Factorising
- 4 Surds
- 5 Straight Line
- 5 Arcs & Sectors
- 6 Solutions

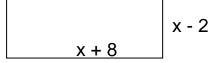


Percentages


- 1. £4800 was put into an Isa account for 5 years. During this time it accrued 4% interest per annum. How much was in the account at the end of this period?
- 2. A car was bought for £9600. In the first year it lost 18% of its value, and in the second year it lost a further 9%. What would the car be worth after 2 years give your answer to the nearest pound.
- 3. A house was bought for £140,000 last year. It has been revalued this year at £142,000. What is the percentage increase in its value? Give your answer correct to 1 decimal place.
- 4. Sam had a pay rise last year of 3%. If he now earns £25,338, what was his salary last year?
- 5. How much interest would be earned by placing \pounds 5400 into a savings account at an interest rate of 2 $\frac{1}{2}$ % for 4 years?
- 6. A washing machine sells for £333.70. This includes VAT at 17½%. What is the price without VAT?
- 7. Mary bought a flat for £84000. It's value appreciated by 3% in the first year and depreciated by 3% in the second year. How much is the flat worth two years after Mary bought it?

Volume

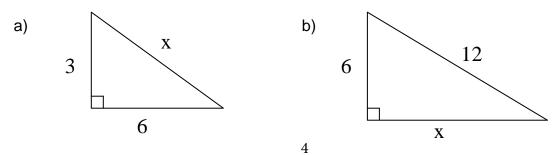

2. Water from a full tank A is transferred to tank B. Find the depth of the water in tank B. Give your answer to 2 s.f


3. Paper cones are provided beside a water cooler in a works canteen. They have a depth of 10 cm and a diameter at the top of 7 cm. Jane fills a paper cone with water and pours it into her china mug, which is cylindrical with a radius of 4.5 cm. How deep is the water in the cup?

Expanding Brackets

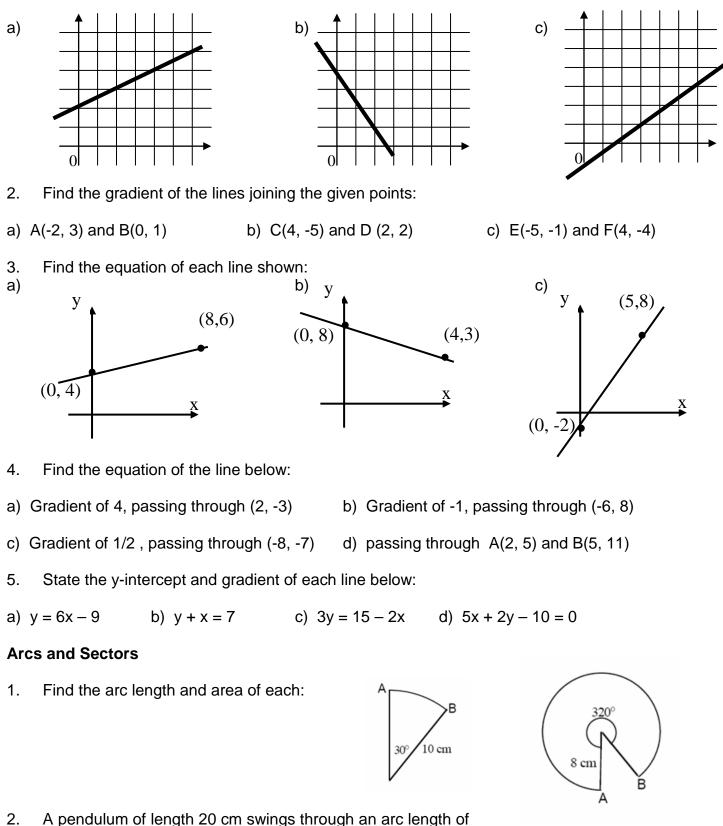
- 1. Expand and simplify:
- a) (2a + 1)(a + 3)b) $(y - 6)^2$ c) (4 - y)(2 + y)d) (3x - 1)(x + 5)e) (2d - 1)(2d + 2)f) $(x - 2)(2x^2 - 7x - 3)$ g) $(5x - 1)(4x^2 - x - 2)$
- 2. Find an expression for the area of the path round the garden shown:

3. Find x if the rectangle and square shown have the same area:



Factorising

1. Factorise the following trinomial expressions:-						
a) $x^2 + 3x + 2$	b) $x^2 + 6x + 5$	c) $x^2 + 7x +$	10	d) t ² + 9t + 8		
e) $y^2 - 4y + 4$	f) p ² – 12p + 35	g) v ² – 10v -	+ 16	h) x ² – x – 2		
i) $a^2 - 6a - 7$	j) m ² – 12m + 36	k) $z^2 - 2z -$	15	l) c ² – 13c+ 12		
2. Factorise – a mixture of types (common factor, trinomial, difference of 2 squares):						
a) $x^2 + 3x + 2$	b) m ² – 36	c) $x^2 + 6x +$	5	d) x ² + 7x + 10		
e) $y^2 + 6y$	f) t ² + 9t + 8	g) a ² + 5a		h) x ² – 4		
i) 2x + 3xy	j) 9b ² – 16	k) $3x^3 - x^2$		I) $64y^2 - 25$		
3. Factorise fully:						
a) $2x^2 + 5x + 3$	b) $2x^2 + 7x + 5$	c) $3x^2 + 7x + 2$	d) $2x^2 - 5x$	+ 3		
e) $3x^2 - 2x - 5$	f) $3x^2 - 13x - 10$	g) $5x^2 - 13x - 6$	h) 5x ² – 11x	x + 2		
i) $3x^2 + 11x + 10$	j) 6x ² + 5x + 1	k) $2x^2 - 7x + 6$	l) 5x ² + 6x -	- 8		
m) 2x ² – 18	n) 5x ² – 80	o) $3x^2 - 12$	p) 11x ² – 1 ²	1		
q) $4x^2 - 100$	r) 9x ² – 36	s) $8x^2 - 50$	t) 27x ² - 30	0		


Surds

- 1. Write the following as surds in their simplest form
- a) $\sqrt{27}$ b) $\sqrt{75}$ c) $2\sqrt{98}$ d) $\sqrt{125} \sqrt{80}$ e) $\sqrt{20} + \sqrt{45} - \sqrt{125}$ f) $\sqrt{27} + \sqrt{75} - \sqrt{12}$ g) $\sqrt{3} \times \sqrt{3}$ h) $\sqrt{2} \times \sqrt{18}$ i) $2\sqrt{5} \times 3\sqrt{5}$ j) $\frac{\sqrt{40}}{\sqrt{10}}$ k) $\frac{\sqrt{80}}{\sqrt{5}}$ l) $\frac{\sqrt{90}}{\sqrt{5}}$ m) $5\sqrt{72}$
- 2. Find the length of the missing side, x, as a surd in its simplest form:

Straight Line

1. Find the equation of each line shown on the graphs below:

- 13 cm. Through what angle has it turned?
- 3. A sector has a radius of 12 cm and an area of 120 cm². What is the angle at the centre?

Answers

Percentages

1. £5839.93 2. £7164 3. 14.3% 4. £24 600 5. £560.59 6. 284 7. £83 924.40 (x + 5)(x + 1)b) 513.1 cm³ c) 1150.3 cm^3 d) 1282.8 cm³ 1. a) 2010.6 cm³ e) 311.0 cm³ V cuboid = 1680 cm^3 Height = 8.4 cm (2sf)2. V cone = 128.28 cm³ 3. Depth = 2.01 cm**Expanding Brackets** 1 a) $2a^2 + 7a + 3$ b) $y^2 - 12y + 36$ c) $8 + 2y - y^2$ d) $3x^2 + 14x - 5$ e) $4d^2 + 2d - 2$ f) $2x^3 - 11x^2 + 11x + 6$ g) $20x^3 - 9x^2 - 9x + 2$ 2. 15x - 9(x - 6) = 6x + 543. $(x + 8)(x + 2) = (x + 2)^2$ x = 10Factorising 1. a) (x + 2)(x + 1)b) (x + 5)(x + 1)c) (x + 5)(x + 2) d) (t + 8)(t + 1)e) $(y-2)^2$ f) (p-7)(p-5)g) (v-8)(v-2) h) (x-2)(x+1)j) $(m - 6)^2$ i) (a - 7)(a + 1)k) (z-5)(z+3)I) (c - 12)(c - 1)2. a) (x + 2)(x + 1)b) (m - 6)(m + 6)c) (x + 5)(x + 1)d) (x + 5)(x + 2)e) y(y + 6)f) (t + 8)(t + 1)g) a(a + 5) h) (x-2)(x+2)

- i) x(2 + 3y)3. a) (2x + 3)(x + 1)b) (2x + 5)(x + 1)c) (3x + 1)(x + 2)d) (2x + 1)(x - 3)
 - e) (3x-5)(x+1)i) (3x+2)(x-5)j) (3x+1)(2x+1)m) 2(x-3)(x+3)f) (3x+2)(x-5)g) (5x-2)(x+3)h) (5x-1)(x-2)k) (2x-3)(x-2)l) (5x-4)(x+2)m) 5(x-4)(x+4)n) 5(x-4)(x+4)n) 5(x-4)(x+2)p) 11(x-1)(x+1)r) 9(x-2)(x+2)s) 2(2x-5)(2x+5)t) 3(3x-10)(3x+10)

Surds

1 a) 3√3	b) 5√3	c) 14√2	d) √5	e) 0	f) 6√3	g) 3
h) 6	i) 30	j) 2	k) 4	I) 3√2	m) 30√2	
2. a) 3√5	b) 6√3					
Straight Lir	ne					
1. a) $y = \frac{1}{2}$	x+2	b) $y = -\frac{3}{2}x + 4$		c) $y = \frac{2}{3}x - 1$		
2. a) m = -	1	b) $m = -\frac{7}{2}$		c) $m = -\frac{1}{3}$		
3. a) $y = \frac{1}{4}$.	<i>x</i> + 4	b) $y = -\frac{5}{4}x$	+8	c) $y = 2x - 2$	2	
4. a) $y + 3 = 4$.	=4(x-2) $x-5$	b) $y-8 = -(x+6)$ y = -x+2		c) $y+7 = \frac{1}{2}(x+8)$ 2y = x-6		
d) $y-5 = y = 2x$	= 2(x-2) x+1					

c) $m = -\frac{1}{3}$ c = (0, 5) d) $m = -\frac{1}{2}$ c = (0	c) $m = -\frac{2}{3}$ c = (0, 5)	d) $m = -\frac{5}{2}$ $c = (0, 5)$
---	----------------------------------	------------------------------------

5. a) m = 6 c = (0, -9) b) m = -1 c = (0, 7)

Arcs and Sectors

- 1. a) Arc length = 5.23 cmArea of sector = 26.2 cm^2 b) Arc length = 44.7 cmArea of sector = 178.7 cm^2
- 2. Angle = 37°
- 3. Angle = 95.5°