Maths Revision Booklet

Page	Contents
2	Percentages
2	Volume
3	Expanding Brackets
4	Factorising
4	Surds
5	Straight Line
5	Arcs \& Sectors
6	Solutions

Percentages

1. $£ 4800$ was put into an Isa account for 5 years. During this time it accrued 4% interest per annum. How much was in the account at the end of this period?
2. A car was bought for $£ 9600$. In the first year it lost 18% of its value, and in the second year it lost a further 9%. What would the car be worth after 2 years - give your answer to the nearest pound.
3. A house was bought for $£ 140,000$ last year. It has been revalued this year at $£ 142,000$. What is the percentage increase in its value? Give your answer correct to 1 decimal place.
4. Sam had a pay rise last year of 3%. If he now earns $£ 25,338$, what was his salary last year?
5. How much interest would be earned by placing $£ 5400$ into a savings account at an interest rate of $2 \frac{1}{2} \%$ for 4 years?
6. A washing machine sells for $£ 333.70$. This includes VAT at $171 / 2 \%$. What is the price without VAT?
7. Mary bought a flat for $£ 84000$. It’s value appreciated by 3% in the first year and depreciated by 3% in the second year. How much is the flat worth two years after Mary bought it?

Volume

1. Calculate the volume of the following shapes:-
(a)

(b)
1

(c)

(d)

(e)

2. Water from a full tank A is transferred to tank B. Find the depth of the water in tank B. Give your answer to 2 s.f

14 cm
Tank A

Tank B
3. Paper cones are provided beside a water cooler in a works canteen. They have a depth of 10 cm and a diameter at the top of 7 cm . Jane fills a paper cone with water and pours it into her china mug, which is cylindrical with a radius of 4.5 cm . How deep is the water in the cup?

Expanding Brackets

1. Expand and simplify:
a) $(2 a+1)(a+3)$
b) $(y-6)^{2}$
c) $(4-y)(2+y)$
d) $(3 x-1)(x+5)$
e) $(2 d-1)(2 d+2)$
f) $(x-2)\left(2 x^{2}-7 x-3\right)$
g) $(5 x-1)\left(4 x^{2}-x-2\right)$
2. Find an expression for the area of the path round the garden shown:

The path is 3 metres wide all the way round the garden
3. Find x if the rectangle and square shown have the same area:

Factorising

1. Factorise the following trinomial expressions:-
a) $x^{2}+3 x+2$
b) $x^{2}+6 x+5$
c) $x^{2}+7 x+10$
d) $t^{2}+9 t+8$
e) $y^{2}-4 y+4$
f) $p^{2}-12 p+35$
g) $v^{2}-10 v+16$
h) $x^{2}-x-2$
i) $a^{2}-6 a-7$
j) $m^{2}-12 m+36$
k) $z^{2}-2 z-15$
I) $c^{2}-13 c+12$
2. Factorise - a mixture of types (common factor, trinomial, difference of 2 squares):
a) $x^{2}+3 x+2$
b) $m^{2}-36$
c) $x^{2}+6 x+5$
d) $x^{2}+7 x+10$
e) $y^{2}+6 y$
f) $t^{2}+9 t+8$
g) $a^{2}+5 a$
h) $x^{2}-4$
i) $2 x+3 x y$
j) $9 b^{2}-16$
k) $3 x^{3}-x^{2}$
I) $64 y^{2}-25$
3. Factorise fully:
a) $2 x^{2}+5 x+3$
b) $2 x^{2}+7 x+5$
c) $3 x^{2}+7 x+2$
d) $2 x^{2}-5 x+3$
e) $3 x^{2}-2 x-5$
f) $3 x^{2}-13 x-10$
g) $5 x^{2}-13 x-6$
h) $5 x^{2}-11 x+2$
i) $3 x^{2}+11 x+10$
j) $6 x^{2}+5 x+1$
k) $2 x^{2}-7 x+6$
l) $5 x^{2}+6 x-8$
m) $2 x^{2}-18$
n) $5 x^{2}-80$
o) $3 x^{2}-12$
p) $11 x^{2}-11$
q) $4 x^{2}-100$
r) $9 x^{2}-36$
s) $8 x^{2}-50$
t) $27 x^{2}-300$

Surds

1. Write the following as surds in their simplest form
a) $\sqrt{ } 27$
b) $\sqrt{ } 75$
c) $2 \sqrt{ } 98$
d) $\sqrt{ } 125-\sqrt{ } 80$
e) $\sqrt{ } 20+\sqrt{ } 45-\sqrt{ } 125$
f) $\sqrt{27}+\sqrt{75}-\sqrt{12}$
g) $\sqrt{3} \times \sqrt{3}$
h) $\sqrt{2} \times \sqrt{18}$
i) $2 \sqrt{5} \times 3 \sqrt{5}$
j) $\frac{\sqrt{40}}{\sqrt{10}}$
k) $\frac{\sqrt{80}}{\sqrt{5}}$
I) $\frac{\sqrt{90}}{\sqrt{5}}$
m) $5 \sqrt{72}$
2. Find the length of the missing side, x, as a surd in its simplest form:
a)

6
b)

Straight Line

1. Find the equation of each line shown on the graphs below:
a)

b)

c)

2. Find the gradient of the lines joining the given points:
a) $A(-2,3)$ and $B(0,1)$
b) $C(4,-5)$ and $D(2,2)$
c) $E(-5,-1)$ and $F(4,-4)$
3. Find the equation of each line shown:
a)

b) y

4. Find the equation of the line below:
a) Gradient of 4 , passing through ($2,-3$)
b) Gradient of -1 , passing through $(-6,8)$
c) Gradient of $1 / 2$, passing through $(-8,-7)$
d) passing through $A(2,5)$ and $B(5,11)$
5. State the y-intercept and gradient of each line below:
a) $y=6 x-9$
b) $y+x=7$
c) $3 y=15-2 x$
d) $5 x+2 y-10=0$

Arcs and Sectors

1. Find the arc length and area of each:

2. A pendulum of length 20 cm swings through an arc length of 13 cm . Through what angle has it turned?
3. A sector has a radius of 12 cm and an area of $120 \mathrm{~cm}^{2}$. What is the angle at the centre?

Percentages

1. $£ 5839.93$
2. $£ 7164$
3. 14.3%
4. $£ 24600$
5. $£ 560.59$
6. 284
7. $£ 83924.40$
$(x+5)(x+1)$
8. a) $2010.6 \mathrm{~cm}^{3}$
b) $513.1 \mathrm{~cm}^{3}$
c) $1150.3 \mathrm{~cm}^{3}$
d) $1282.8 \mathrm{~cm}^{3}$
e) $311.0 \mathrm{~cm}^{3}$
9. $\quad V$ cuboid $=1680 \mathrm{~cm}^{3}$

Height $=8.4 \mathrm{~cm}(2 \mathrm{sf})$
3. V cone $=128.28 \mathrm{~cm}^{3}$

Depth $=2.01 \mathrm{~cm}$

Expanding Brackets

1 a) $2 \mathrm{a}^{2}+7 \mathrm{a}+3$
b) $y^{2}-12 y+36$
c) $8+2 y-y^{2}$
d) $3 x^{2}+14 x-5$
e) $4 d^{2}+2 d-2$
f) $2 x^{3}-11 x^{2}+11 x+6$
g) $20 x^{3}-9 x^{2}-9 x+2$
2. $15 x-9(x-6)=6 x+54$
3. $(x+8)(x+2)=(x+2)^{2}$

$$
x=10
$$

Factorising

1. a) $(x+2)(x+1)$
b) $(x+5)(x+1)$
c) $(x+5)(x+2)$
d) $(t+8)(t+1)$
e) $(y-2)^{2}$
f) $(p-7)(p-5)$
g) $(v-8)(v-2)$
h) $(x-2)(x+1)$
i) $(a-7)(a+1)$
j) $(m-6)^{2}$
k) $(z-5)(z+3)$
I) $(c-12)(c-1)$
2. a) $(x+2)(x+1)$
b) $(m-6)(m+6)$
c) $(x+5)(x+1)$
d) $(x+5)(x+2)$
e) $y(y+6)$
f) $(t+8)(t+1)$
g) $a(a+5)$
h) $(x-2)(x+2)$
i) $x(2+3 y)$
j) $(3 b-4)(3 b+4)$
k) $x^{2}(3 x-1)$
I) $(8 y-5)(8 y+5)$
3. a) $(2 x+3)(x+1)$
b) $(2 x+5)(x+1)$
c) $(3 x+1)(x+2)$
d) $(2 x+1)(x-3)$
e) $(3 x-5)(x+1)$
f) $(3 x+2)(x-5)$
g) $(5 x-2)(x+3)$
h) $(5 x-1)(x-2)$
i) $(3 x+5)(x+2)$
j) $(3 x+1)(2 x+1)$
k) $(2 x-3)(x-2) \quad$ l) $(5 x-4)(x+2)$
m) $2(x-3)(x+3)$
n) $5(x-4)(x+4)$
o) $3(x-2)(x+2)$
p) $11(x-1)(x+1)$
q) $4(x-5)(x+5)$
r) $9(x-2)(x+2)$
s) $2(2 x-5)(2 x+5)$
t) $3(3 x-10)(3 x+10)$

Surds

1 a) $3 \sqrt{ } 3$
b) $5 \sqrt{ } 3$
c) $14 \sqrt{ } 2$
d) $\sqrt{ } 5$
e) 0
f) $6 \sqrt{ } 3$
g) 3
h) 6
i) 30
j) 2
k) 4
I) $3 \sqrt{ } 2$
m) $30 \sqrt{ } 2$
2. a) $3 \sqrt{ } 5$
b) $6 \sqrt{ } 3$

Straight Line

1. a) $y=\frac{1}{2} x+2$
b) $y=-\frac{3}{2} x+4$
c) $y=\frac{2}{3} x-1$
2. a) $m=-1$
b) $m=-\frac{7}{2}$
c) $m=-\frac{1}{3}$
3. a) $y=\frac{1}{4} x+4$
b) $y=-\frac{5}{4} x+8$
c) $y=2 x-2$
4. a) $\begin{aligned} & y+3=4(x-2) \\ & y=4 x-5\end{aligned}$
b) $\begin{aligned} & y-8=-(x+6) \\ & y=-x+2\end{aligned}$
c) $\begin{aligned} & y+7=\frac{1}{2}(x+8) \\ & 2 y=x-6\end{aligned}$
d) $\begin{aligned} & y-5=2(x-2) \\ & y=2 x+1\end{aligned}$
5. a) $m=6 \quad c=(0,-9)$
b) $m=-1 \quad c=(0,7)$
c) $m=-\frac{2}{3} \quad c=(0,5)$
d) $m=-\frac{5}{2} \quad c=(0,5)$

Arcs and Sectors

1. a) Arc length $=5.23 \mathrm{~cm} \quad$ Area of sector $=26.2 \mathrm{~cm}^{2}$
b) Arc length $=44.7 \mathrm{~cm} \quad$ Area of sector $=178.7 \mathrm{~cm}^{2}$
2. Angle $=37^{\circ}$
3. Angle $=95.5^{\circ}$
