Starter

1) Solve for T :

$$
5 T<8 T-3
$$

$$
3+5 T<8 T
$$

2) Simplify: $\begin{array}{lr}\frac{3 m^{2}-6 m}{m^{2}-8 m+12} & -57 \\ & 3<3 T\end{array}$
3) Simplify: $\frac{C}{\sqrt[3]{C^{2}}}=\frac{C^{11} 1^{2 / 3}}{C^{1 / 3} T>1}$
4) Solve for $m: \quad 3(m-2)=2(3-m)+9$

$$
\begin{gathered}
3 m-6=6-2 m+9 \\
3 m-6=15-2 m \\
3 m=21-2 m \\
5 m=21 \\
m=\frac{21}{5}
\end{gathered}
$$

In McDonalds, Georgia bought 2 happy meals, and paid $8 €$. Harry got a happy meal and a McFlurry and paid $6 €$.

How much does each item cost?

$$
\begin{aligned}
2 h & =8 \\
h & =4
\end{aligned}
$$

$n+m=6$ $4+m=6$
$m=2$

Today's Learning:

Soving simultaneous equations using substitution.

Mike wanted to know the price of tickets and popcorn at the cinema.

All he knows is that James bought 2 tickets and 1 popcorn and that cost $£ 28$, and Sarah bought 1 ticket and 3 popcorn and that cost $£ 24$.

How could he figure out the price of popcorn and of tickets?
$2 T_{T} P=28$ $P=28-2 T$
$T+3 p=24$
$T+3(28-2 T)=24$
$T+84-6 T=24$
$-5 T+84=24$
$84=24+5$
$60=57$
$12=T$

Simultaneous Equations - Substitution
e.g. Find x and y if $\quad 3 x+2 y=18$ and $y-x=-1$
$+x+6$
$y=-1+x$
substitute $y=-1+x$ into y^{5+} equation

$$
\begin{gathered}
3 x+2 y=18 \\
3 x+2(-1+x)=18 \\
3 x-2+2=18 \\
5-2=18 \\
+2=+20 \\
5=20 \\
x=4
\end{gathered}
$$

sub. $x=4$ into equation:

$$
\begin{gathered}
y-x=-1 \\
y-4=-1 \\
+4+4 \\
y=3
\end{gathered}
$$

Solve each pair of equations below using the method of substitution.
a) $y=x$ and $3 x-y=10 \quad x=y=5$
b) $y=2 x$ and $5 x+y=14 \quad x=2, y=4$
c) $y=3 x+1$ and $y=x+7 \quad x=3, y=10$
d) $y=x \quad$ and $\quad 5 x-y=4$
$x=y=1$
e) $y=2 \boldsymbol{x}$ and $2 \boldsymbol{x}+3 y=24 \quad x=3, y=6$
f) $y=5 x-4$ and $y=2 x+11 \quad x=5, y=21$

Solving by elimination:

$$
\begin{array}{ll}
2 y+x=5 & 2 y+x=5 \\
4 y-x=7 & 4+x=5
\end{array}
$$

$$
\begin{aligned}
& 6 y=12 \\
& y=2
\end{aligned}
$$

$x=1$

Today's Learning:

$$
\begin{aligned}
& T+B=6 \\
& T-B=4
\end{aligned}
$$

Solving Simultaneous Equations by elimination.

Solve the pairs of simultaneous equations...
a) $a+b=4$ $a-b=2$
b) $\begin{aligned} a+b & =9 \\ a-b & =5\end{aligned}$
c) $a+b=7$
$a-b=3$

Starter

1) Fully factorise:
2) Solve for g :
 $2 g+9>-g$

$$
\begin{gathered}
3 g>-9 \\
\div 3
\end{gathered}
$$

3) Find the area of the shape:
(2) $A=L: B$

$$
=10 \times 6
$$

$$
\begin{align*}
& 4 b+2 c=50 \text { (1) } \\
& 2 b+2 c=30 \tag{2}\\
& \text { (1) } 4 b+2 c=50 \\
& \text { (2) } 2 b+2 c=30 \\
& -1 x \text { (2) }-2 b-2 c=-30 \\
& 20+2 c=30 \\
& 2 b=20 \\
& -20-20 \\
& b=10 \\
& 2 c=10 \\
& c=5
\end{align*}
$$

d) $3 a+b=90$
$a+b=5$ (b)
$a=2$ $b=3$
e) $4 a+b=11$
$2 a+b=5$
$a=3$
$b=-1$
f) $7 a+2 b=36$
$2 a+2 b=16$

Starter

Solve the following: (Hint - you may have to multiply one equation by -1 , you may not)

1) $\mathbf{m}+\boldsymbol{n}=6$
$3 m-n=10$
$4 m=16$
2) $p+q=11$
3) $2 a+b=9$
4) $p+2 q=0$
$2 m+3 n=-11$
5) $4 m+3 n=2$
$2 m-3 n=-1 / 2$
6) Simplify as much as possible:
a) $\frac{2 x^{2}+10 x+12}{2 x+6}$
b) $\sqrt[3]{c^{4}} \times \frac{1}{\sqrt[3]{c^{4}}}$
c) $\sqrt{40}-\sqrt{90}$

$$
=\frac{2\left(x^{2}+5 x+6\right)}{2(x+3)}
$$

$$
c^{\frac{4}{3}} \times \frac{1}{c^{1 / 3}}
$$

$$
\begin{aligned}
& =\frac{x^{2}+5 x+6}{x+3}=c^{4 / 3} \times c^{-1 / 3} \\
& =c^{3 / 3}
\end{aligned}
$$

$$
=\frac{x+2}{1}
$$

$$
=x+2
$$

$$
\begin{aligned}
& 4 b+c=21 \\
& 2 b+3 c=13 \\
&-3 \times(1)-12 b-3 c=-363 \\
& 2 b+3 c=13 \\
&-10 b=-50 \\
& b=5 \\
& \text { (2) } \\
& \text { use (1) } 4 b+c=21 \\
& 20+c=21 \\
& c=1
\end{aligned}
$$

$$
\begin{aligned}
& 2 a+3 b=40 \\
& 3 a+2 b=35(2) \\
& 3 \times(1): 6 a+9 b=120 \\
&-2 \times(2):-62-4 b=-70 \\
& 5 b=50 \quad \begin{array}{rl}
4 c e 0 \\
2 a+3 b & 2 a=40 \\
2 a=10 \\
a=5
\end{array} \\
& b=10 \quad
\end{aligned}
$$

Solving Simultaneous Equations

\pm Label the equations
Multiply each equation so you can cancel something out
A Add the equations together
ATS Solve
$\underset{\hbar}{ }$ Substitute to find the other unknown

$$
\begin{aligned}
\text { e.g. 1) } \begin{aligned}
7 b-5 c & =35 \\
9 b-4 c=45 & (2) \\
4 \times(1) \quad 28 b-20 c & =140 \\
-5 \times(2)-45 b+20 c & =-225 \\
-17 b & =-85 \\
b & =5 \\
\text { use (1) } 7 b-5 c & =35 \\
-55-5 c & =35 \\
-5 c & =0 \\
c & =0
\end{aligned}
\end{aligned}
$$

2) $\begin{aligned} 2 x+3 y & =7 \\ 4 x+5 y & =12\end{aligned}$

$$
\begin{array}{r}
5 \times(1) \quad 10 x+15 y=35 \\
-3 \times(2)-12 x-15 y=-36 \\
\hline-2 x=-1 \\
x=\frac{-1}{-2}=\frac{1}{2}
\end{array}
$$

$$
\text { use (1) } 2 x+3 y=7
$$

$$
\begin{aligned}
1+3 y & =7 \\
3 y & =6 \\
y & =2
\end{aligned}
$$

Today's Learning:
Practising exam type questions.

Starter

1) a) Factorise $2 d^{2}-7 d-4=(2 d+1)(d-4)$
b) Hence simplify $\frac{2 d^{2}-7 d-4}{d^{2}-16} \quad 2 d^{2}-8 d+d-4$

2) Find the volume of a cylinder with radius 20 cm and height of 1 metre.

$$
\begin{aligned}
V & =11^{2} \mathrm{~h} \\
& =\pi \times 20^{2} \times 100 \\
& =125663.7 \mathrm{~cm}^{3}
\end{aligned}
$$

3) Evaluate: $2 \times(-3)+4-2(3-2)+2 \times(-5)$

$$
\begin{aligned}
& =2 \times(-3)+4-2(1)+2 \times(-5) \\
& =-6+4-2+-10 \\
& =-14
\end{aligned}
$$

5) Four sandwiches and 3 hot-dogs cost $£ 7.50$.

Two sandwiches and 4 hot-dogs cost $£ 6$.
Form simultaneous equations and solve them to find the cost of each sandwich and hot-dog. (1) $45+3 H=7 \cdot 50$
(2) $25+4 H=6$
6) At Smith's Stationers, the cost of a ruler and a pencil together is 57 p. The ruler costs 23 p more than the pencil. Find the cost of each.

$$
\begin{aligned}
& R+P=570 \\
& P+23=R \\
& P-R=-23(2)
\end{aligned}
$$

