Straight Line Past Papers Unit 1 Outcome 1

Multiple Choice Questions

Each correct answer in this section is worth two marks.

1. The line with equation y = ax + 4 is perpendicular to the line with equation 3x + y + 1 = 0.

What is the value of *a*?

- A. -3
- B. $-\frac{1}{3}$
- D. 3

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
С	1.1	С	0.7	0.62	NC	G2, G5	HSN 089

$$3x+y+1=0$$

 $y=-3x-1$. So $m_1=-3$. Compare to $y=mx+c$
The line $y=ax+4$ has gradient $m_2=a$

Since the lines are perpendicular, $m_1 \times m_2 = -1$, ie

$$-3a = -1$$

$$\alpha = \frac{1}{2}$$

Option C

PSfrag replacements

[END OF MULTIPLE CHOICE QUESTIONS]

Written Questions

2. Find the equation of the perpendicular bisector of the line joining A(2,-1) and [SQA] B(8,3).

4

EGI MESTE		T Inda	no	n-calc	C	alc	ca	c neut	Conte	nt Reference :	11
part	marks	Unit	C	A/B	C	A/B	С	A/B	Main	Additional	1.1
V.	4	1.1		8 0000 N			4	3 - Wee-1	1.1.1	1.1.9	Source
		1.1					-		1.1.1	1.11.2	1996 P1 qu.1

frag replacements

O x

midpoint = (5,1)

 $y-1=-\frac{3}{2}(x-5)$

3. Find the equation of the straight line which is parallel to the line with equation [SQA] 2x + 3y = 5 and which passes through the point (2, -1).

3

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
	3	С	CN	G3, G2	2x + 3y = 1	2001 P1 Q1

•¹ ss: express in standard form

•² ic: interpret gradient

• 3 ic: state equation of straight line

• $y = -\frac{2}{3}x + \frac{5}{3}$ stated or implied by • 2

• $u_{\text{line}} = -\frac{2}{3}$ stated or implied by • $u_{\text{line}} = -\frac{2}{3}(x-2)$

4. Find the equation of the line through the point (3, -5) which is parallel to the line [SQA] with equation 3x + 2y - 5 = 0.

2

		T 7	no	n-calc	c	alc	ca	c neut	Conte	nt Reference :	1.1
part	marks	Unit	C	A/B	C	A/B	C	A/B	Main	Additional	***
200	2	11					2		1.1.7	1.1.8	Source
ž.	*	1.1					5		10.	*****	1991 P1 qu.1

frag replacements

O $\boldsymbol{\chi}$

•
$$m = -\frac{3}{2}$$
 stated or implied by • ²

•
$$y - (-5) = -\frac{3}{2}(x-3)$$

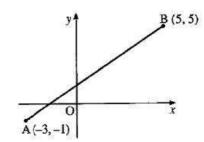
replacements

3

3

[SQA]

5.


A and B are the points (-3, -1) and (5, 5).

Find the equation of (a) the line AB

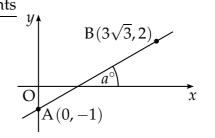
frag replacements

(b) the perpendicular bisector of AB.

 χ y

PStrag replacements

1.1	Content Reference:	c neut	cal	alc	C	n-calc	no			
222	Main Additional	A/B	C	A/B	C	A/B	C	Unit	marks	part
Source	1.1.7		2		-			1.1	2	(a)
1999 P1 qu.2	1.1.10		3					1.1	3	(b)


frag replacements

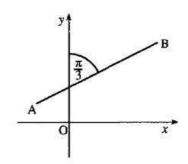
O χ y

- $y-5=\frac{3}{4}(x-5)$ or $y-(-1)=\frac{3}{4}(x-(-3))$
- midpoint = (1, 2)

6. Find the size of the angle a° that the line [SQA] joining the points A(0,-1) and $B(3\sqrt{3},2)$

makes with the positive direction of the *x*-axis.

Pai	t Marks	Level	Calc.	Content	Answer	U1 OC1
	3	С	NC	G2	30	2000 P1 Q3


- \bullet^1 ss: know how to find gradient or equ.
- pd: process
- interpret exact value
- 2 tan a =gradient stated or implied by
- 3 a = 30

replacements

4

1

[SQA] 7. The line AB makes an angle of $\frac{\pi}{3}$ radians with the *y*-axis, as shown in the diagram. Find the exact value of the gradient of AB.

PStrag replacements

frag replacements

O x y

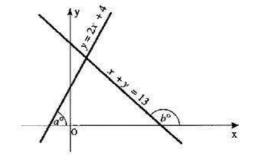
	no	on-calc	C	alc	cal	c neut	Content Reference :	1.1	
t marks Unit	С	A/B	C	A/B	С	A/B	Main Additional	1,1	
2 1.1						2	1.1. <i>7</i>	Source	
5 377								1999 P1 qu.7	

frag replacements

•2 1

O *x y*

O x y


O

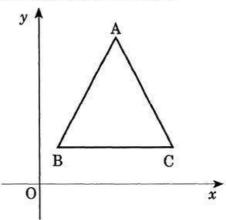
[SQA] 8. The lines y = 2x + 4 and x + y = 13 make angles of a° and b° with the positive direction of the x-axis, as shown in the diagram.

"correct angle" = $\frac{\pi}{2} - \frac{\pi}{3}$

- (a) Find the values of a and b.
- (b) Hence find the acute angle between the two given lines.

11	nt Reference :	Conte	c neut	cal	alc	Ca	n-calc	no	T.T 14	0.000000000	part marks	
1.1	Additional	Main	A/B	C	A/B	С	A/B	C	Unit	marks	part	
Source		1.1.3				4			1.1	4	(a)	
1993 P1 qu.		0.1				1			0.1	1	(b)	

- frag replacements
- $a = 63.4^{\circ}$
- a $\tan(180-b)=1$


 $\tan a^{\circ} = 2$

- b = 135
- 5 180 a (180 b) or equiv. to b a

replacements

O x y $hsn_{uk,ne}$

9. A triangle ABC has vertices A(4, 8), B(1, 2) and C(7, 2). [SQA]

(a) Show that the triangle is isosceles.

(2)

frag replacements (b) (i)

O

The altitudes AD and BE intersect at H, where D and E lie on BC and CA respectively. Find the coordinates of H.

(7)

(ii) Hence show that H lies one quarter of the way up DA. χ y

(1)

Content Reference: non-calc calc calc neut 1.1 part marks Unit A/B A/B A/B Main Additional Source 2 1.1 2 1.1.2 (a) 1995 Paper 2 (b) 8 1.1 8 1.1.10, 0.1

Calculate the length of the sides

•
2
 $AB = AC = \sqrt{3^{2} + 6^{2}}$

knows to find equ. of an altitude

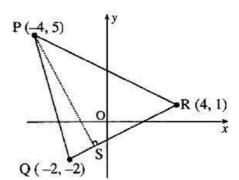
- $m_{AC} = -2$
- $m_{\rm BE} = \frac{1}{2}$
- $y-2=\frac{1}{2}(x-1)$
- x = 4 stated or implied
- knows how to find intersection
- $H = \left(4, \frac{7}{2}\right)$
- DA = 6 and $DH = 1\frac{1}{2}$

frag replacements O

> χ y

replacements

O


Qu.1

Higher Mathematics

 y^{χ} Quest

3

[SQA] 10. P(-4,5), Q(-2,-2) and R(4,1) are the vertices of triangle PQR as shown in the diagram. Find the equation of PS, the altitude from P.

frag replacements

O χ

y

O

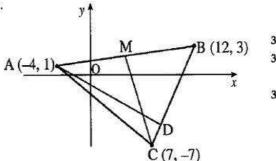
 \boldsymbol{x} y

		Timin	no	n-calc	С	alc	ca	c neut	Conte	nt Reference :	11
part	marks	Unit	C	A/B	C	A/B	C	A/B	Main	Additional	1,1
861	3	11					3		1.1.1	1.1.9, 1.1.7	Source
2	y	1.1					,		1.1.1	1.1.7, 1.1.7	1997 P1 qu.1

frag replacements

- $m_{QR} = \frac{1}{2}$
- PN: y-4=-2(x+3)

replacements


PStrag replacements

Higher Mathematics

 $_{y}^{\chi}$ Quest

11. A triangle ABC has vertices A (-4, 1), B (12, 3) and C (7, -7). [SQA]

- Find the equation of the median CM. (a)
- (b) Find the equation of the altitude AD.
- Find the coordinates of the point of intersection of (c) CM and AD.

frag replacements

O χ

y

SITO ON VICE	10.00000000000000000000000000000000000	19.40074	no	n-calc	C	alc	cal	c neut	Content Ref	ference :	1.1
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Add	itional	***
(a)	3	1.1	C 6:				3		1.1.7		Source
(b)	3	1.1	1				3		1.1.7 1.1.9)	1999 Paper 2
(c)	3	0.1					3		0.1		Qu. 1

(a)
$$\bullet^1$$
 midpoint = $(4,2)$

•
$$^2 m_{MC} = -3$$

•3
$$y-2=-3(x-4)$$
 or $y-(-7)=-3(x-7)$

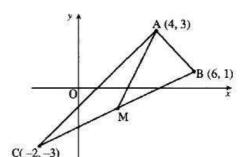
(b)
$$-4 m_{PC} = 2$$

•5
$$m_1 = -\frac{1}{2}$$

•6
$$y-1=-\frac{1}{2}(x-(-4))$$

(c) •7 e.g.
$$3x + y = 14$$
 and $x + 2y = -2$

•8 attempt to eliminate a variable


frag replacements

O \boldsymbol{x} y

replacements

6

12. A triangle ABC has vertices A(4, 3), B(6, 1) and C(-2, -3) [SQA] as shown in the diagram. Find the equation of AM, the median from A.

PStrag replacements

frag replacements

O χ y

. W		TIit	no	n-calc	C	alc	ca	lc neut	Conte	nt Reference :	11
part	marks	Unit	C	A/B	C	A/B	C	A/B	Main	Additional	1.1
20	3	1.1			i.		3		1.1.6	117	Source
28	প্র	100					(2)		200500	CURK!	1998 P1 qu.:

frag replacements

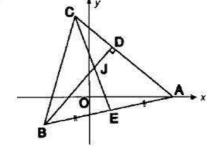
O χ

y

 $m_{AM}=2$

M = (2, -1)

y - (-1) = 2(x - 2)


13. In the diagram A is the point (7,0), B is (-3,-2) and C(-1,8). [SQA] The median CE and the altitude BD intersect at J.

- (a) Find the equations of CE and BD.
- (b) Find the co-ordinates of J.

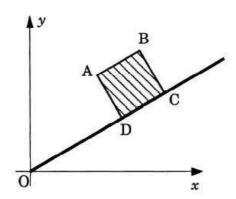
• E = (2,-1)

frag replacements O

> χ y

	7001500 4 7020	1990292	no	n-calc	C	alc	cal	c neut	Conte	nt Reference :	1.1
part	marks	Unit	С	A/B	С	A/B	C	A/B	Main	Additional	
(a)	6	1.1	6		2315110100				1.1.7	1.1.9, 1.1.1	Source
(b)	2	1.1	2						1.1.10		1992 P1 qu.2

frag replacements


O x

- $m_{CE} = -3$
- y (-1) = -3(x 2) or y 8 = -3(x (-1))
- $m_{BD} = -1$

 $m_{AC} = -1$

- y-(-2)=1(x-(-3))
- strat: attempt to solve simultaneously

14. ABCD is a square. A is the point with coordinates (3,4) and ODC has [SQA] equation $y = \frac{1}{2}x$.

- frag replacements (a) Find the equation of the line AD.
 - O (b) Find the coordinates of D.
 - y (c) Find the area of the square ABCD.

(2)
1 41

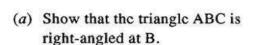
- (3)
- (2)

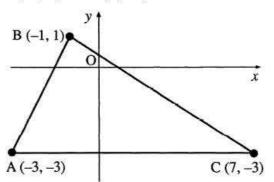
part marks		77. 14	non-calc		calc		calc neut		Content Reference:	1.1
	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	11
(a)	3	1.1				1	3		1.1.9, 1.1.7	Source
(b)	3	0.1	1				3		0.1	1994 Paper 2
(c)	2	1.1	1				2		1.1.2	Qu.2

- using $m_1m_2 = -1$

 - y-4=-2(x-3)
- strategy for sim. equations
 - 2x + y = 10 or equiv
 - (4,2)
- (c) strategy: find length of AD

replacements

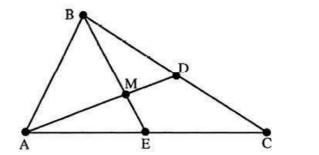

frag replacements


O xy

 y^{χ} Quest

[SQA] 15. A triangle ABC has vertices A(-3, -3), B(-1, 1) and C(7, -3).

(3)


frag replacements

O

x y

(i) Find the equations of AD and BE.

(ii) Hence find the coordinates of M.

(3)

(5)

part marks	5000000 4 00	Unit	non-calc		calc		calc neut		Content Reference:	1.1
	marks		C	A/B	С	A/B	C	A/B	Main Additional	
(a)	3	1.1			1.7-3		3		1.1.10	Source
(b)i	5	1.1				18	5		1.1.10	1996 Paper 2
(b)ii	3	0.1					3		0.1	Qu.2

(a)
$$\bullet^1$$
 $m_{AB} = 2$

$$_{\mathrm{BC}}^{2} = -\frac{1}{2}$$

•
3
 $m_{AB} \times m_{BC} = -1 \Rightarrow m_{AB} \perp m_{BC}$

(b)
$$\bullet^4$$
 D = (3,-1) and E = (2,-3)

•
$$m_{AD} = \frac{1}{3}$$

• AD:
$$y+1=\frac{1}{3}(x-3)$$
 or equiv.

•7
$$m_{\rm BE} = -\frac{4}{3}$$

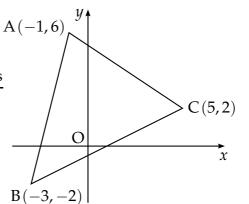
•8 BE:
$$y-1=-\frac{4}{3}(x+1)$$
 or equiv.

•9 eg clear fractions

• 11
$$x = 1$$
, $y = -\frac{5}{3}$

frag replacements

replacements

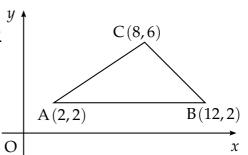

4

1

16. Triangle ABC has vertices A(-1,6), [SQA] B(-3, -2) and C(5, 2).

Find

- (a) the equation of the l_{me}^{PSfrag} replacements median from C of triangle ABC.
- (b) the equation of the line q, the perpendicular bisector of BC.
- (c) the coordinates of the point of intersection of the lines p and q.


PStrag replacements

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
(a)	3	С	CN	G7	y=2	2002 P2 Q1
(b)	4	С	CN	G7	y = -2x + 2	
(c)	1	С	CN	G8	(0,2)	

- •¹ ss: determine midpoint coordinates
- pd: determine gradient thro' 2 pts
- state equation of straight line
- ss: determine midpoint coordinates
- pd: determine gradient thro' 2 pts
- ss: determine gradient perp. to \bullet^5
- state equation of straight line
- 8 pd: process intersection

- \bullet^1 F = mid_{AB} = (-2, 2)
- 2 $m_{FC} = 0$ stated or implied by 3
- 3 equ. FC is y = 2
- \bullet^4 M = mid_{BC} = (1,0)
- $m_{BC} = \frac{1}{2}$ $m_{L} = -2$
- $\bullet^7 y 0 = -2(x 1)$
- \bullet^{8} (0,2)

- 17. Triangle ABC has vertices A(2,2), [SQA] B(12,2) and C(8,6). PSfrag replacements
 - (a) Write down the equation of l_1 , the perpendicular bisector of AB.
 - (b) Find the equation of l_2 , the perpendicular bisector of AC.
 - (c) Find the point of intersection of lines l_1 and l_2 .
 - (d) Hence find the equation of the circle passing through A, B and C.

PStrag replacements

4

1

2

1

- Part Marks U2 OC4 Level Calc. Content Answer x = 71 C CN G3, G7 2001 P2 Q7 (a) 4 $\overline{\mathsf{C}}$ CN G7 3x + 2y = 23(b) (c) 1 C **CN** G8 (7,1)(d) 2 A/B CN G8, G9, G10 $(x-7)^2 + (y-1)^2 = 26$
 - •¹ ic: state equation of a vertical line
 - pd: process coord. of a midpoint
 - ss: find gradient of AC
 - 4 ic: state gradient of perpendicular
 - ic: state equation of straight line
 - pd: find pt of intersection
 - ss: use standard form of circle equ.
 - •8 ic: find radius and complete

- $\bullet^1 \ \ x = 7$
- \bullet^2 midpoint = (5,4)
- $m_{AC} = \frac{2}{3}$ $m_{\perp} = -\frac{3}{2}$
- \bullet^5 $y-4=-\frac{3}{2}(x-5)$
- $\bullet^6 \ \ x = 7, y = 1$
- $\bullet^{7} (x-7)^{2} + (y-1)^{2}$ $\bullet^{8} (x-7)^{2} + (y-1)^{2} = 26$

or

- $\bullet^7 x^2 + y^2 14x 2y + c = 0$
- •8 c = 24

[SQA] 18. The vertices of a triangle are P(-1,1), Q(2,1) and R(-6,2). Find the equation of the altitude of triangle PQR, drawn from P.

3

3

		part marks	Unit	non-calc		calc		calc neut		Content Reference:		1.1
	part	marks	Unit	C	A/B	C	A/B	C	A/B	Main	Additional	
	is.	3	1.1					3		1.1.7	1.1.9	Source 1989 P1 qu.1
		•¹ n	$n_{QR} = -\frac{1}{8}$							**		
rag replacements		•	$n_{\perp} = 8$									
O	1	• ³ y	· - (-1) = 8	8(x-(-	1))							
\boldsymbol{x}	ı											

[SQA] 19. Find the equation of the median AD of triangle ABC where the coordinates of A, B and C are (-2,3), (-3,-4) and (5,2) respectively.

calc neut Content Reference: non-calc calc 1.1 part marks Unit C A/B Main Additional A/B A/B Source 3 1.1.7 1.1.1 3 1.1 1995 P1 qu.5 OR •1 for showing triangle isosceles D = (1, -1)frag replacements $m_{BC} = \frac{3}{4}$ giving $m_{AD} = -\frac{4}{3}$ use A and D to get $m_{AD} = -\frac{4}{3}$ O $y-3=-\frac{4}{3}(x--2)$ $y-3=-\frac{4}{3}(x--2)$ x

[END OF WRITTEN QUESTIONS]

y