Ο y^{x} Quest

Wave Fctn Past Papers Unit 3 Outcome 4

Written Questions

1. Express $8 \cos x^\circ - 6 \sin x^\circ$ in the form $k \cos(x^\circ + a^\circ)$ where k > 0 and 0 < a < 360. [SQA] 4

Part	Marks	Level	Calc.	Content	Answer	U3 OC4
	4	С	CR	T13	$10\cos(x^\circ + 36.9^\circ)$	2001 P2 Q5
•1 •2 •3 •4	ss: exp ic: com pd: pro pd: pro	and <i>k</i> co npare co cess cess	$es(x^\circ + x)$	a°) ts	• ¹ $k \cos x \cos a - k \sin a$ explicitly • ² $k \cos a = 8$ and k explicitly • ³ $k = 10$ • ⁴ $a = 36.9$	$nx\sin a \qquad stated$ $x\sin a = 6 \qquad stated$

frag replacem

[SQA]

frag

 $2_{\mathcal{V}}^{\mathcal{X}} \text{ Express } 2\sin x^{\circ} - 5\cos x^{\circ} \text{ in the form } k\sin(x-\alpha)^{\circ}, \ 0 \le \alpha < 360 \text{ and } k > 0.$

4

4

2

			Tinit	no	n-calc	C	alc	cal	c neut	Content Reference :	3.4
	part		Unit	C	A/B	С	A/B	C	A/B	Main Additional	
	•	4	3.4			4				3.4.1	Source 1997 P1 qu.11
		•1	$k \sin(x-a)$) = k si	n x cos a	-kco	s x sin a	sta	ited exp	licitly	
replacements		•2	$k\cos a = 2$	and	k sin a =	5					
0		•3	$k = \sqrt{29}$								
x	6	•4	$a = 68 \cdot 2$								
V			1000			-	1000000				

3. (a) Express $\sin x^{\circ} - 3\cos x^{\circ}$ in the form $k\sin(x-a)^{\circ}$ where k > 0 and $0 \le a < 360$. Find [SQA] the values of k and a. frag replacements

> Ο (b) Find the maximum value of $5 + \sin x^\circ - 3\cos x^\circ$ and state a value of x for which this x maximum occurs. Y

Content Reference : non-calc calc calc neut 3.4 Unit part marks A/B Main Additional A/B A/BSource 3.4 3.4.1 (a) 4 4 (b) 2 3.4 1 1 3.4.3 1992 P1 qu.7 •5 maximum = $5 + \sqrt{10}$ •1 $k\cos a = 1$ frag replacements •6 angle = 161.6° $k \sin a = 3$ Ο .3 $k = \sqrt{10}$ replacements x •4 a = 71.6y Ο y y **hsn**.uk.net

frag replacements

ing replacelik	.1113							
[SQA]	4Q	Solve the sin	nultaneo	us equation	ns ksin x°	= 5		
	x				$k \cos x$ °	=2 where	$k \ge 0$ and $0 \le x \le 360$	li -
	y							
	1			non-calc	calc	calc neut	Content Reference :	34
		part marks	Unit	C A/B	C A/B	C A/B	Main Additional	Source
		. 4	3.4		4	8	3.4.1	1995 P1 qu.13
	1000					. 1 .	$\frac{2(.2,2)}{2}$	1
. 1		•' 1	$an x = \frac{5}{2}$				$\left(\sin^2 x + \cos^2 x\right) = 29$	
rag replaceme	ents	•* :	$r = 68 \cdot 2$	-		• ² k	r = √29	
	0	• 1	$k^2 = 25 + 4$	or $k = \frac{3}{\sin 6}$, <u>8·2</u>	• ³ t	$an x = \frac{5}{2} or sin x = \frac{5}{\sqrt{29}}$	
	<i>x</i>	•4)	$k = \sqrt{29}$			•4 x	:= 68 · 2	
frag replaceme	ents							
	0							
	_ <i>x</i>	0.1.11				. the interre	10 < ~ < 360	
[SQA]	5.y	Solve the eq	uation 2	$\sin x^2 - 3c0$	$sx^{\circ} = 2 \cdot 51$	n the interv	at $0 \leq x < 300$.	
		part marks	Unit	non-calc	calc	calc neut	Content Reference : Main Additional	3.4
				C A/B			24.2	Source
		. 8	3.4		8	3	3.4.2	Qu. 9
						L		
		• ¹ stra	ategy:e.g.	k sin(x -	a) stated	l or implied by	•6 kcos(x-a) kcosxcosa+	k sin x sin a
		$\cdot^2 ksi$	n x cosa -	k cos x sin a	stated	explicitly	$k\cos a = -3$, $k = \sqrt{13}$ tar	$k\sin a = 2$
		• ³ km	a = 2 m	ad $k \sin a = 3$	stated	explicitly	a=146.3	····
		4 .		as noning-c			$\cos(x - 146.3)$ x - 146.3 = 46) = 0.693 5.1, 313.9
		• K=	V13				x = 192.4, 4	60.2
		• ³ a =	56.3				x = 192.4, 10	JU.2
		• ⁶ sin	(x - 56.3) =	$=\frac{2.5}{\sqrt{13}}$				
		• ⁷ x-	56.3 = 43.	9, 136.1	136.1 stated	l or implied by	the	1
		• ⁸ 100).2° and	192.4°	appearance	of 192.4 in • ⁸	ksin(x + a) ksin x cos a + k cos x sin a	kcos xcos a – ksin xsin a
		1000					$k\cos a = 2, k\sin a = -3$ $k = \sqrt{13}, \tan a = -\frac{3}{2}$	$k\cos a = -3, k\sin a = -2$ $k = \sqrt{13}, \tan a = \frac{2}{3}$
		OR					a = 303.7	a = 213.7
frag replaceme	ents	• ⁷ x-	56.3 = 43.	9, $x = 100.2^{\circ}$			sin(x + 303.7) = 0.693 x + 303.7 = 43.9, 136.1	cos(x+213.7) = 0.693 x+213.7 = 46.1, 313.9
<u> </u>	0	• ⁸ 192	2.4°	28 - 28 million († 2007)			x = -259.8, -167.6 x = 100.2, 192.4	x = -167.6, 100.2
	v		tories.				a = 100.67 172.8	x = 172.4, 100.2
	л И					-()		
	y	L						

rep<u>lacements</u>

O *x y* **∽hsn**.uk.net 4

8

frag replacements $f(x) = 2\cos x^\circ + 3\sin x^\circ$.

- O(a) Express f(x) in the form $k\cos(x-\alpha)^\circ$ where k>0 and $0 \le \alpha < 360$. (4) (3)
- $\frac{x}{y}(b)$ Hence solve algebraically f(x) = 0.5 for $0 \le x < 360$.

		100000000000	TTUE	noi	n-calc	Ca	lc	cal	c neut	Content Reference :	3.4
	part	marks	Unit	С	A/B	С	A/B	С	A/B	Main Additional	0.1
	(a) (b)	4 3	3.4 3.4			4 3				3.4.1 3.4.2	Source 1996 Paper 2 Qu.7
	(a) (b)	•1) •2) •3) •4 (•5 (•6)	$\cos x \cos x \cos x \cos \alpha = 2$ $\cos \alpha = \sqrt{13}$ $\alpha = 56.3$ $\cos(x - 56.3 = 100$	α + k s and .3)° = - .82.0, 2	$ \frac{\sin x \sin \alpha}{k \sin \alpha} = \frac{0.5}{\sqrt{13}} $ 278.0	χ = 3					
frag replacements O x		•7	x = 138.3,	334.3							

7. Find the maximum value of $\cos x - \sin x$ and the value of x for which it occurs in [SQA] the interval $0 \le x \le 2\pi$.

_	
6	
υ	

Part	Marks	Level	Calc.	Content	Answ	rer			U3 OC4
	6	A/B	CN	T14	max	value	$\sqrt{2}$	when	2000 P1 Q10
					$x = \frac{72}{4}$	$\frac{\pi}{1}$			
•1 •2 •3 •4 •5 •6	ss: use ic: exp pd: con pd: pro pd: pro ic: inte	e.g. k co pand cho npare co cess cess erpret tri	ps(x + a) sen rule efficien g expre) ts ssion	• ¹ e.g. • ² k cc • ³ k cc • ⁴ k = • ⁵ tan • ⁶ mai <i>not</i>	use k co s x cos a s a = 1 a $\sqrt{2}$ a = 1, a x. value accept 4	$ ps(x + k = k = k = \frac{\pi}{4}) $ $ = \frac{\pi}{4} $ $ p = \sqrt{2} $ $ p = \sqrt{2} $ $ p = \sqrt{2} $	a) n x sin a sin $a = 1$ (45° <i>is b</i> a 2 when x	ad form) $c = \frac{7\pi}{4}$ (do

[SQA] 8.

- (a) Show that $2\cos(x^\circ + 30^\circ) \sin x^\circ$ can be written as $\sqrt{3}\cos x^\circ 2\sin x^\circ$.
- (*b*) Express $\sqrt{3}\cos x^\circ 2\sin x^\circ$ in the form $k\cos(x^\circ + \alpha^\circ)$ where k > 0 and $0 \le \alpha \le 360$ and find the values of k and α .
- (c) Hence, or otherwise, solve the equation $2\cos(x^{\circ} + 30^{\circ}) = \sin x^{\circ} + 1$, $0 \le x \le 360$.

		marles	Linit	no	n-calc	ca	lc	cal	c neut	Content Reference :	24
	part	marks	Unit	С	A/B	C	A/B	С	A/B	Main Additional	3.4
	(a)	3	2.3	2.3		3				2.3.2, 1.2.11	1990 Paper 2
	(b)	4	3.4			4				3.4.1	
	(c)	3	3.4				3			3.4.2	Qu. 5
	-	- 9-			_						
	(<i>u</i>)	•1 0	os(x+30)	$\circ = \cos$	r°cos3	0° – sir	x° sin (30°			
	NUMBER OF	_2 v	3	1	.0		*********				
		81 1.5 (72)	$\sum_{x \in a} cos x^{x} =$	$\overline{2}^{\sin 2}$							
		• 2	$\times \left(\frac{\sqrt{3}}{2}\cos\right)$	$x^{\circ}-\frac{1}{2}$	$\sin x^{\circ}$	$-\sin x^{\alpha}$					
			ζ-	101)						
	10.22420										
	(b)	•* k	$\cos x^{\circ} \cos x$	$\alpha^{\circ}-k$	sin x° si	nα°					
		• ⁵ k	$\sin \alpha^{\circ} = \gamma$	$\overline{3}$ and	d ksina	χ° = 1					
		6 4	500	- 126							
		7	- 1/ 00	- 440							
		• 0	t = 49.1								
	(0)	.8	7 costra	10 1)0	-1						
ag replacements			7 COS(2 +	49.1)	-1						
		•° x	= 18.7°								
0	'	• ¹⁰ x	= 243.1°								
x											
y	L										

replacements

3

4

3

							PSfrag	g replacements	
								О	
High	er Mathem	atics						y^{x} Ques	t
[SQA] 9.	The form depth of	ula d = water, c	200 + 800 l, measur	cos 30 red in	t° +√: centir	3 sin 30t°) netres, in	gives an approxin a harbour <i>t</i> hours	nation to the after	
	(a) Exp	values	$f(t) = \cos 30$ of k and	$\alpha^{\circ} + \sqrt{2}$	3 sin 3 ere 0 :	$0t^\circ$ in the $\leq \alpha \leq 360$	form $k\cos(30t - \alpha)$.)° and state	(4
	(b) (i) (ii)	Use y 0≤t≤ Hence	our resul ≤ 12. e, on a se	t from parate	n part e diag	(a) to hel ram, sket	p you sketch the gr ch the graph of <i>d</i> fo	aph of $f(t)$ for or $0 \le d \le 12$.	(6
	(c) Wh sho	at is the wn on y	e "low-w your grap	ater″ t oh?	ime a	t the hart	our during the tim	e interval	(1
frag replacements O x y	(d) If the the it av	ne local harbou void en ph?	fishing fl r withou tering the	eet ne t risk (e harb	eds a of run our di	t least 1-5 ning agro uring the	metres depth of w ound, between wha time interval show	ater to enter at hours must m on your	(2
-	part marks	Unit	non-calo		alc	calc neut	Content Reference :	3.4	
	(a) 4 (b) 6 (c) 1	3.4 1.2 0.1		4	4	C A/D	3.4.1 1.2.3, 1.2.4 0.1	Source 1989 Paper 2 Qu. 9	

 $k\cos 30t^{\circ}\cos \alpha^{\circ} + k\sin 30t^{\circ}\sin \alpha^{\circ}$ (a) •1 (c) •11 0800 hours .2 $k\cos\alpha^\circ = 1$ and $k\sin\alpha^\circ = \sqrt{3}$ (d) k = 2·¹² 5.6 hours and 10.4 hours •¹³ e.g. between 5am and 11am $\alpha = 60$ •5 (b) maximum at (2,2) .6 minimum at (8, -2) .7 endpoints: (0,1) or (12,1) .8 graph correctly annotated with 3 points frag replacements .9 sketch with original amplitude increased by factor of 60 0 $\begin{pmatrix} 0\\200 \end{pmatrix}$ •10 sketch with original graph translated x y

replacements

O $y \square$ hsn.uk.net

- [SQA] 10. The displacement, *d* units, of a wave after *t* seconds, is given by the formula $d = \cos 20t^\circ + \sqrt{3} \sin 20t^\circ$.
 - (*a*) Express *d* in the form $k \cos(20t^{\circ} \alpha^{\circ})$, where k > 0 and $0 \le \alpha \le 360$.
 - (*b*) Sketch the graph of *d* for $0 \le t \le 18$.
 - (*c*) Find, correct to one decimal place, the values of t, $0 \le t \le 18$, for which the displacement is 1.5 units.

~	
З	5

4

4

mark m	arke Un	it no	n-calc	Ca	lc	cal	c neut	Content Reference :	3.4
part m		n C	A/B	С	A/B	С	A/B	Main Additional	0.1
(a) 4	1 3.4	8		4				3.4.1	Source
(b) 4	4 1.2			2	2			1.2.3	1991 Paper 2
(c) 3	3 2.3			1	2			2.3.1	Qu. 8
(b)		α°=1 and 0 oints: (0,1 s: (7.5,0) a onary poin ct annotat	ksinα ^o) or (18, nd (16.5 ts: (3,2) ion of gr	$r^2 = \sqrt{3}$ (,1) (5,0) (and (raph)	(12, -2)				
g replacements (c)	• ⁹ 2 cos	(20t – 60)°	= 1.5						
5 replacements									
O	• ¹⁰ 20 <i>t</i> –	60 = 41.4 =	$\Rightarrow t = 5.1$						

4

3

- [SQA] 11. (a) Write sin(x) cos(x) in the form k sin(x a) stating the values of k and a where k > 0 and $0 \le a \le 2\pi$
 - (*b*) Sketch the graph of $y = \sin(x) \cos(x)$ for $0 \le x \le 2\pi$, showing clearly the graph's maximum and minimum values and where it cuts the *x*-axis and the *y*-axis.

Part	Marks	Level	Calc.	Content	Answer	U3 OC4
<i>(a)</i>	4	С	NC	T13	$\sqrt{2}\sin(x-\frac{\pi}{4})$	2002 P1 Q9
(b)	3	С	NC	T15, T14	sketch	
•1 •2 •3 •4 •5 •6 •7	ss: knc ic: com pd: wri pd: pro ic: ske ic: int/ pd: pro	ow to exp npare co te down cess <i>a</i> tch a sin com ma cess inte	pand, an efficien the val e curve ax. and ercepts	nd expand ts ue of <i>k</i> min. values	 ¹ k sin x cos a - k cos x sin a explicitly ² k cos a = 1 and k sin a = explicitly ³ k = √2 ⁴ a = π/4 accept in degrees ⁵ correct shape of graph (in not passing through the original formula of a graph lies between √2 and ⁶ (π/4,0), (5π/4,0), (0,-1) answers in radians 	the stated = 1 stated the sin but the sin but the sin but the stated the

(1)

Higher Mathematics

(b)

[SQA] 12. The function f is defined by $f(x) = 2\cos x^\circ - 3\sin x^\circ$.

- (a) Show that f(x) can be expressed in the form f(x) = k cos(x + α)° where k > 0 and 0 ≤ α < 360, and determine the values of k and α.
 (4)
- frag replacements
 - $\frac{1}{O}$ at which they occur, where x lies in the interval $0 \le x < 360$. (4)

Hence find the maximum and minimum values of f(x) and the values of x

- x (c) Write down the minimum value of $(f(x))^2$.
- y

part	marke	Unit	no	n-calc	C	alc	cal	c neut	Content Reference :	3.4
part	marks	Om	C	A/B	C	A/B	C	A/B	Main Additional	
(a)	4	3.4			4				3.4.1	Source
(b)	4	3.4	1		1	3			3.4.3	1996 Faper
(c)	1	0.1	L			1			0.1	Qu. 7
(a)	•1	k cos x co	$s\alpha - k$	sin r sir	ια i	stated	explic	itly		
	•2	$k \sin \alpha =$	3 and	kcosα	=2	stated	explic	itly		
	•3	$k = \sqrt{13}$								
	-4	$\alpha = 56.3$								
(<i>b</i>)	•5	$\sqrt{13}\cos($	x + 56.	3)						
	•6	Max =	13 ar	ud min	= -√1	3				
	•7	<i>x</i> = 303.7	and	no furth	ner ans	swers				
	•8	<i>x</i> = 123.7	and	no furth	ier ans	swers				
(0)	9	Min Val	ue = 0							

frag replacements

(4)

(4)

Higher Mathematics

[SQA] 13. A builder has obtained a large supply of 4 metre rafters. He wishes to use them to build some holiday chalets. The planning department insists that the gable end of each chalet should be in the form of an isosceles triangle surmounting two squares, as shown in the diagram.

(a) If
$$\theta^{\circ}$$
 is the angle shown in the diagram and A is the area (in square metres) of the gable end, show that $A = 8(2 + \sin \theta^{\circ} - 2\cos \theta^{\circ})$. (5)

(b) Express $8\sin\theta^\circ - 16\cos\theta^\circ$ in the form $k\sin(\theta - \alpha)^\circ$.

O (c) Find algebraically the value of θ for which the area of the gable end is x 30 square metres

 $\frac{x}{y}$ 30 square metres.

		That	non-calc calc			calc neut		Content Reference :		
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	3.4
(a)	5	0.1			1	4			0.1, 2.3.3	Source
(b)	4	3.4			4				3.4.1	1993 Paper 2
(c)	4	3.4			1	3			3.4.2	Qu.9
(a)	• ¹ at	ea of trian	ele =	$\frac{1}{2} \times 4 \times 4$	sin $ heta$	or 2×-	×4si	$in\frac{\theta}{2} \times 4c$	$\cos\frac{\theta}{2}$	
	.2	ratery for	findin	2 a lonath	ofeic	le of con	1970.0	2 r roctano	2 rlo	
	3 4	rategy for	nide	g length	bofol	ie of squ	areo	r rectaria	sie volo	
	4	on af mata	side	or (tengu	101 51	ide) of	squa	c/rectai	igic	
	- a	simulifying							Note - For - ³ various f	orme of the longth a
	• 51	mpiirying				Note : For + Various in	orms of the length a			
(b)	• st	rategy incl	uding	expansi	on of	$k\sin(\theta -$		square: $4\sin\frac{\theta}{2}$, -	$\frac{2\sin\theta}{16-16\cos^2}$	
	$\bullet^7 k$	$k\cos\alpha = 8 \& k\sin\alpha = 16$							- 2'si	n(90- ^g) 1
	$\bullet^8 k$	$k = 8\sqrt{5}$ or equiv.							rect:	$\left(\frac{\sin\theta}{90-\frac{\theta}{2}}\right)$, $\sqrt{32-32\cos\theta}$
	• ⁹ ta	$n\alpha = 2 =$	$\alpha =$	63 · 4						
(c)	• ¹⁰ 8	$2 + \sin \theta - 2$	2cosθ) = 30						
	• ¹¹ 8	$\sqrt{5}$ sin($\theta - \theta$	3·4)°	= 14						
	• ¹² si	n(<i>θ</i> − 63 · 4)	°=0·	783						

frag replacements

frag replacements (b) The function h is defined by h(x) = f(x) + g(x).

- O Show that h(x) can be expressed in terms of a single trigonometric
- x function of the form $q\sin(px+r)^\circ$ and find the values of p, q and r.

(5)

	manles	Theit	no	n-calc	C	alc	cal	c neut	Content Reference :	3.4
part	marks	Unit	C	A/B	С	A/B	С	A/B	Main Additional	0.1
(a)	4	2.3			4				2.3.2	Source
(b)	5	3.4			5				3.4.1	1995 Taper .
(979)			1	<u> </u>				<u> </u>		Qu.4
(a)	• ¹ a	= 3								
	• ² b	= 2								
	• ³ c	= 3								
	4	1-3								
	- 4									
(b)	• ⁵ p	<i>v</i> = 3								
(b)	• ⁵ p	y = 3 $\sin(px + r)$	·)°							
(b)	• ⁵ p • ⁶ q	p = 3 sin(px + r))°	- a cos m	ŝin	¢				
(b)	• ⁵ p • ⁶ q =	p = 3 sin(px + r = q sin px° o)° cos <i>r</i> ° -	+ q cos p3	c° sin 1	¢				
(b)	• ⁵ p • ⁶ q • ⁷ q	p = 3 = $q \sin(px + r)$ = $q \sin px^{\circ} d$ = $\sqrt{13}$)° cos <i>r</i> ° +	+ q cos ps	c° sin 1	ŕ				
(b)	• ⁵ p •6 q = •7 q • ⁸ q	p = 3 = $q \sin(px + r)$ = $q \sin px^{\circ} d$ = $\sqrt{13}$ $q \cos r^{\circ} = 2$)° cos <i>r</i> ° + , <i>q</i> sin 3	$r^{\circ} = 3$	c° sin 1	ŕ				
(b)	• ⁵ p • ⁶ q • ⁷ q • ⁸ q	p = 3 = $q \sin px^{\circ} d$ = $\sqrt{13}$ $q \cos r^{\circ} = 2$ or $\tan r^{\circ} =$)° cos <i>r</i> ° + , qsin = 3/2	$r^{\circ} = 3$	c° sin 1	°				

frag replacement

(2)

(10)

[SQA] 15. An artist has been asked to design a window made from pieces of coloured glass with different shapes. To preserve a balance of colour each shape must have the **same** area. Three of the shapes used are drawn below.

Relative to *x*,*y*–axes, the shapes are positioned as shown below.

frag replacements

Ο

x

y

(b) Use the area found in part (a) to find the value of p.
(c) Prove that q satisfies the equation cosq + sinq = 0.081 and hence find the value of q to 2 significant figures.

$\begin{bmatrix} a \\ b \\ c \\ c$		in a set		Theit	no	n-calc	C	alc	cai	c neut	Content Reference :	2.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		part	marks	Unit	С	A/B	С	A/B	C	A/B	Main Additional	3.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(a)	4	2.2			4				2.2.6	Source
(c) 10 3.4 2 8 3.4.2, 3.2.1, 2.2.7 Qu.10 (a) \cdot^{1} strategy: know to integrate (c) $\cdot^{7} \int (\sin x - \cos x) dx$ $\cdot^{2} \int_{0}^{2} (2x - x^{2}) dx$ \cdot^{8} for the limits $\frac{q}{\frac{\pi}{4}}$ $\cdot^{3} x^{2} - \frac{1}{\pi}x^{3}$ $\cdot^{9} [-\cos x - \sin x]$		(b)	2	0.1			2				0.1	1992 Paper 2
(a) \cdot^{1} strategy: know to integrate (c) $\cdot^{7} \int (\sin x - \cos x) dx$ (c) $\cdot^{7} \int (\sin x - \cos x) dx$	l	(c)	10	3.4			2	8			3.4.2, 3.2.1, 2.2.7	Qu.10
$\frac{4}{1\frac{1}{3}} \frac{1}{3} \frac{1}{$	g replacements O	(a) (b)	• str • $\int_{0}^{2} \int_{0}^{2} ($ • $\frac{3}{x^{2}} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{5}{5} + \frac{1}{5} + \frac{1}$	ategy: kn $\left(2x - x^2\right)$ $-\frac{1}{3}x^3$ <i>units</i> ² ategy: us $=\frac{4}{\sqrt{3}}$ or e	ow to dx ee area quival	integral to find ; ent	p		(c)		$\sin x - \cos x) dx$ the limits $\int_{\frac{\pi}{4}}^{q} \cos x - \sin x$] $\cos q - \sin q + \sqrt{2}$ $-\frac{4}{3} = 0.081$ ategy: eg $k \cos(q - \alpha)$ $\sqrt{2}$ $\frac{\pi}{4}$ $\left(q - \frac{\pi}{4}\right) = \frac{0.081}{\sqrt{2}}$	
										- <u>y</u> -	2.0	

replacements

0

x

Y

y

SN.uk.net

[END OF WRITTEN QUESTIONS]